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• Mechanical engineering (MEng) and Nuclear Science and Engineering (MSci) from University of Bristol, UK.
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Introduction

An upstream (US) POCO ZXF-5Q graphite fin irradiated in the NT02 target system at NuMI beamline of Fermilab.

Proton beam centreline 

Proton beam 

centreline 

Proton beam centreline 

Braze-attached to stainless steel cooling tube 
containing circulating water at fin top and bottom

Upstream (US)

Downstream 
(DS)

47 POCO ZXF-5Q 
graphite fins in total
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Introduction

A fractured upstream (US) POCO ZXF-5Q graphite fin irradiated in the NT02 target system at NuMI beamline of

Fermilab.

• 340 kW, 120 GeV proton beam, pulsed (cycling time 1.87s), and high

intensity with a Gaussian beam profile (1σ radius = 1.1 mm).

• Rapid thermal cycling, target rose from ∼60°C to ∼370°C in 10 μs and

cooled back to ∼60°C before repeating.

• Temperature gradient from beam centre (∼370 °C) to cooling tube

edge (∼60 °C).

• Inert non-circulating Helium environment (no oxidation).

• A gradient of irradiation damage was created due to both fluence and

temperature distribution, with their exact distributions not resolved.

• It has not been possible to deconvolute fluence and temperature’s

contribution towards the total irradiation damage, among with many

other factors.

• Porosity evolution and crystal irradiation damage were studied across

these damage gradients.
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Materials

A piece of POCO ZXF-5Q graphite fragment irradiated in the NT02 target system at NuMI beamline of Fermilab.

Non-irradiated bulk properties POCO ZXF-5Q [3] IG 430 [3] Gilsocarbon graphite [4]

Average grain size (μm) 1 10 500

Apparent density (g/cm3) 1.78 1.82 1.81

Young’s modulus (GPa) 14.5 10.8 10-11

Total porosity (vol.%) 20 14-21 20

Compressive strength (MPa) 175 90 70

Flexural strength (MPa) 112 54 25-28

Tensile strength (MPa) 79 37.2 ~ 20

Graphitisation temperature (°C) 2500  2800 ~ 2800

Thermal conductivity (W·m−1·K−1) 70 140 138

Coefficient of thermal expansion (10-6 K-1) 8.1 4.8 4.7-4.9

Isotropic ratio <1.03 1.09 1.04 (based on CTE ratio)
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Experimental methods

Focused ion beam-scanning electron microscopy tomography (FIB-SEM tomography)

Simplified schematic of how FIB tomography works [5]

• FIB-SEM tomography is a destructive technique that

physically mills through the material volume.

• Freshly milled material cross-section by ion beam is imaged

by SEM.

• Alternatively repeating this process gives a stack of

tomographic images that could be used for porosity

segmentation and quantification.
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Experimental methods

Raman spectroscopy

• Raman is surface-based laser technique.

• G-band is a common in graphitic materials, corresponding to

sp2 carbon network.

• D-band is an indicator of crystal damage level, A1g symmetry

of the in-plane breathing mode in aromatic rings.

• I(D)/I(G) ratio and G-band evolution (position and width) will

provide rich information and be utilised in this work.
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Linescan 01

Beam 5σ

Beam 

centre

Beam 1σ = 1.1 mm

45° 45°

2 mm

3 mm

Proton beam centreline 

Z direction

Schematic of the sample

Raman laser

45°

45°

R = 3 mm FIB-SEM tomography sites
Beam centre 

Beam 2σ

Beam 5σ

Raman mapping sites
48 maps across linecan01, 

linescan02 and 45° directions.

Each map contains at least 

100 points.

Experimental methods

Measurement schematics (a piece of fractured POCO graphite from beam upstream)

Stitched SEM image showing top-down view8
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Part I: Porosity evolution studied by FIB-SEM tomography

Results: Example of SEM images

Beam centre 02

5 μm

Beam 2σ 01

5 μm

Beam 2σ 02
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Beam 5σ 02

5 μm

5 μm5 μm

Beam centre 01 Beam 5σ 01

(a) (i)

(ii)

(b) (i)

(ii)

(c) (i)

(ii)

beam centreline 

Z direction

Schematic of the sample

45°

45°

R = 3 mm

Beam centre

Beam 2σ

Beam 5σ
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Part I: Porosity evolution studied by FIB-SEM tomography

Results: Example of 3D reconstruction

5 μm

beam 5σ 02 beam 5σ 02
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Part I: Porosity evolution studied by FIB-SEM tomography

Results: Porosity volume percentage
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Apparent drop in the total porosity volumetric percentage at beam centre
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• Porosity volumetric percentage drop at beam centre is

related to a volume reduction of pores having sizes

greater than 0.1 μm3

• It is these relatively larger pores that are heavily

contributing the pore volumes within each rectangular

space examined.

• The change is mostly likely to be caused by bulk

dimensional swelling, but the underlying mechanism is

still not clear and future work is needed.

Part I: Porosity evolution studied by FIB-SEM tomography

Results: Porosity volume percentage
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Part I: Porosity evolution studied by FIB-SEM tomography

Conclusion:

➢ Total pore volume percentage decreased from ~ 12 vol.% to ~ 8 vol.% at proton beam centre area, primarily

due to volume reduction of pores having sizes greater than 0.1 μm3 due to dimensional swelling.

➢ A series of discussions have been made in our manuscript. But the underlying mechanism causing this

reduction is still not clear due to such complicated irradiation environment. Future work on nanoscale

structural change by TEM and diffraction techniques is planned.

➢ We are in the middle of revising our manuscript now addressing the reviewers’ comments.

➢ However, a novel method using Raman spectroscopy seems to provide some insight into the crystal

damage levels.
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Part II: Crystal damage studied by Raman spectroscopy

Results: Spectral evolution
Linescan01 direction

Proton beam centreline 

Z direction

Schematic of the sample

Raman laser

45°

45°

R = 3 mm

• D- and G-band broaden

closer to beam centre.

• Second order 2D-band

gradually disappear.

• Similarly for linescan02

and 45° directions.
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Part II: Crystal damage studied by Raman spectroscopy

Results: Relative G-band shift (G)

• G is the difference between

measured G-band positions

from this sample and that from

non-irradiated POCO (~1583

cm-1).
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• G mainly between +10 cm-1

and -20 cm-1 with a downward

shifting trend within 3σ radius

(3300 m).

• G within 2σ radius mainly

between ~ 5 cm-1 and -20 cm-1.



Mapped NT02 POCO 

curve assuming beam 

centre temperature of 
350-370°C

Proton, 2.5 MeV 

Neutron, HFIR at ORNL

Neutron, extracted from 

BEPO (AXGP graphite)

11B+, 100 keV

He+, 25 keV

He+, 25 keV

He+, 25 keV

He+, 25 keV

Xe+, 320 keV

Part II: Crystal damage studied by Raman spectroscopy

Results: Relative G-band shift (G)

Key messages:

(1) Consistent G-band position shift

behaviour for all.

(2) G-band always shifts to higher

frequencies then it saturates and shifts

back downwards, i.e., a ‘bell’-shaped

curve with a ‘turn-around’ peak.

(3) The ‘turn-around’ peak delays towards

higher dpa values with higher

temperature.
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(4) Estimated total damage level at beam

centre 2σ is equivalent to ~2-5 dpa

assuming peak temperature is ~ 350 –

370 °C.



Part II: Crystal damage studied by Raman spectroscopy

Results: G-band position shift

• Correlating to Ferrari’s three-stage

amorphisation trajectory model.

• Our data mainly within 1590 cm-1

to 1560 cm-1.

• Approaching the middle point of

stage 2, transitioning from

nanocrystalline graphite (NC-

Graphite) into amorphous carbon

(a-C).
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Part II: Crystal damage studied by Raman spectroscopy

Results: I(D)/I(G) ratio against G-band width
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• I(D)/I(G) ratio does not further

increase with increasing damage

now.

• Our I(D)/I(G) ratios are mainly

within 0.5 - 2.

• Confirming again it is approaching

the midway of stage 2,

transitioning from NC-Graphite

into a-C.

• Instead, higher level of irradiation

damage at beam centre is

accompanied by more significant

broadening (FWHM).



Part II: Crystal damage studied by Raman spectroscopy

Results: G-band width (FWHM)

21

(1) Linear broadening of width (W) within 1σ and

3σ distance (D).

(2) W = -0.019D + 139 (1000 μm≪D≪3300 μm)

(3) Broadening at a magnitude of 0.019 cm-1/μm.



Part II: Crystal damage studied by Raman spectroscopy

Conclusion:

➢ Damage level within proton beam 2 σ radius has been quantified to be ~ 2 - 5 dpa at ~ 350 – 370 °C. Correlating our

NT02 POCO data to literature and the amorphization trajectory model gives a clear picture of the disorder stage and how

much crystal damage it can further accommodate.

➢ It is possible to use the developed correlation technique as a lifetime assessment tool for these target graphites, alongside

with regular non-destructive inspections in future.

➢ This method could potentially ‘unify’ irradiation damages across different grades of graphite subjected to different

irradiation conditions, without the need for decoupling individual contributions.
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➢ This work has just been published in the journal of Carbon.



Future work

➢ Detailed TEM analysis of the thin foils extracted from exactly the same locations (ongoing).

➢ Beamline neutron diffraction for strain mapping in upstream POCO fins (data analysis next).

➢ My post-doc work with Science and Technology Facilities Council (STFC) and possibly Fermilab:
• Help identify other high-density fine-grained graphite (assist DUNE and T2K).

• Other grades (compared with IG430 and POCO) with proton irradiation experiment at Birmingham Cyclotron or 

Dalton Cumbrian Facility (UK).

• PIE can be carried out at UKAEA, STFC and Bristol.
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