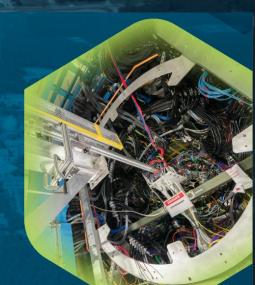
PHENIX Highlights

What's the new results since last RHIC/AGC Users' meeting,

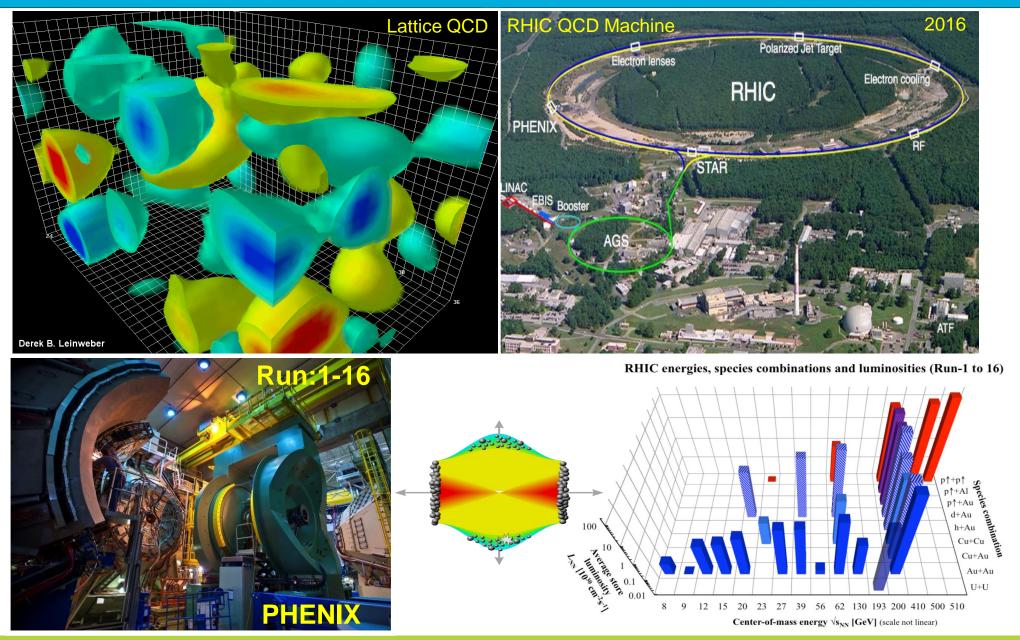
and what have we learned?

Rachid Nouicer, for the PHENIX Collaboration



2023 RHIC/AGS ANNUAL USERS' MEETING

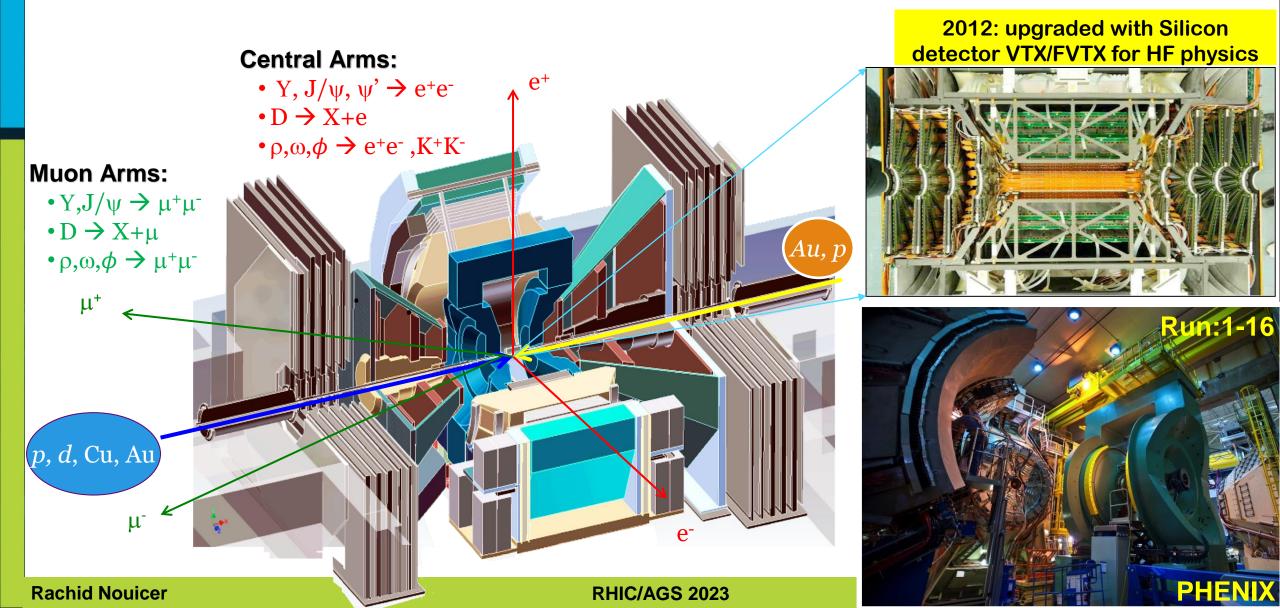
CELEBRATING NEW
BEGINNINGS AT
RHIC and EIC



August 1-4, 2023

RHIC Amazing QCD Machine: Many Species and Energies

PHENIX Collected and Enjoying Every Bit of RHIC Data


- Analyzing and publishing all these very interesting scientific data takes time, manpower, and resources. PHENIX Collaboration is on the right path to achieve these goals, and seek for a new discovery (ies) about the properties of QCD Matter at RHIC.
- To maintain this momentum, Data and Analysis Preservation (DAP) is critical.

Run	Species	Total particle energy [GeV/nucleon]	total delivered Luminosity [mb ⁻¹]
I (2000)	Au+Au	56	< 0.001
	Au+Au	130	20
II (2001/2002)	Au+Au	200	25.8
,	Au+Au	19.6	0.4
	р+р	200	1.4x10 ⁻⁶
III (2003)	d+Au	200	73x10 ⁻³
	p+p	200	5.5x10 ⁻⁶
IV(2004)	Au+Au	200	3.53x10 ⁻³
	Au+Au	62.4	67
	p+p	200	7.1x10 ⁻⁶
V (2005)	Cu+Cu	200	42.1x10 ⁻³
	Cu+Cu	62.4	1.5x10 ⁻³ ္
	Cu+Cu	22.4	0.02x10 ⁻³
	p+p	200	29.5x10 ⁻⁶
	p+p	410	0.1x10 ⁻⁶
VI (2006)	p+p	200	88.6x10 ⁻⁶
	p+p	62.4	1.05x10 ⁻⁶
VII (2007)	Au+Au	200	7.25x10 ⁻³
	Au+Au	9.2	Small
VIII (2008)	d+Au	200	437x10 ⁻³
	p+p	200	38.4x10 ⁻⁶
	Au+Au	9.6	Small

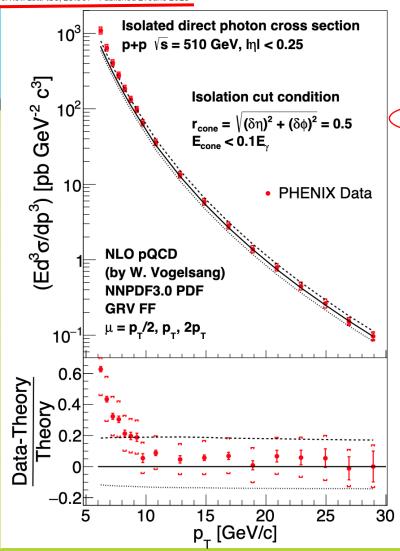
Run	Species	Total particle energy [GeV/nucleon]	Total delivered luminosity [mb ⁻¹]
IX (2009)	p+p	500	110x10 ⁻⁶
	+p	200	114x10 ⁻⁶
X (2010)	Au+Au Au+Au Au+Au Au+Au Au+Au	200 62.4 39 7.7 11.5	10.3x10 ⁻³ 544 206 4.23 7.8
XI (2011)	p+p	500	166x10 ⁻⁶
	Au+Au	19.6	33.2
	Au+Au	200	9.79x10 ⁻³
	Au+Au	27	63.1
XII (2012)	p+p	200	74x10 ⁻⁶
	p+p	510	283x10 ⁻⁶
	U+U	193	736
	Cu+Au	200	27x10 ⁻³
XIII (2013)	р+р	510	1.04x10 ⁻⁹
XIV (2014)	Au+Au	14.6	44.2
	Au+Au	200	43.9x10 ⁻³
	³He+Au	200	134x10 ⁻³
XV (2015)	p+p	200	282x10 ⁻⁶
	p+Au	200	1.27x10 ⁻⁶
	p+Al	200	3.97x10 ⁻⁶
XVI (2016)	Au+Au d+Au d+Au d+Au d+Au	200 200 62.4 19.6 39	52.2x10 ⁻³ 46.1x10 ⁻³ 44.0x10 ⁻³ 7.2x10 ⁻³ 19.5x10 ⁻³

PHENIX Detector: Collected Data from 2000 to 2016

- PHENIX was optimized to measure leptons: rapidity coverage: 1.2<|y|<2.2 and |y|<0.35

Outline

1. Spin Results


- a) Direct γ in Polarized p+p (BNL Recent News)
- b) A_N Heavy Flavor Decay Electrons
- c) High Precision Measurements of A_N of π^0 and η
- 2. Direct γ in Large System Au+Au at 39, 62.4, and 200 GeV
- 3. Hint of QGP Droplets in Small Systems
 - a) Independent Measurements of Flow v2 and v3
 - b) Direct γ and π^0 Production
 - c) Suppression of π^0 Relative to Direct γ First Hint of Energy Loss
 - d) Nuclear Modification Factors for J/ψ and ψ(2S) vs Rapidity

This is a short list from PHENIX recent findings

PHENIX on the News: Direct Photon in Polarized p+p at 510 GeV

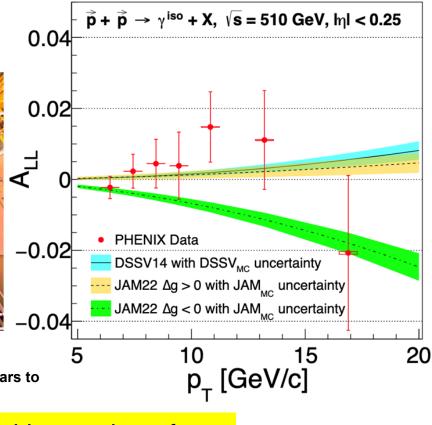
Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at $\sqrt{s} = 510$ GeV in $\vec{p} + \vec{p}$ Collisions

N. J. Abdulameer et al. (PHENIX Collaboration) Phys. Rev. Lett. 130, 251901 - Published 21 June 2023

June 21, 2023

Newsroom Media & Communications Office

Direct Photons Point to Positive Gluon Polarization

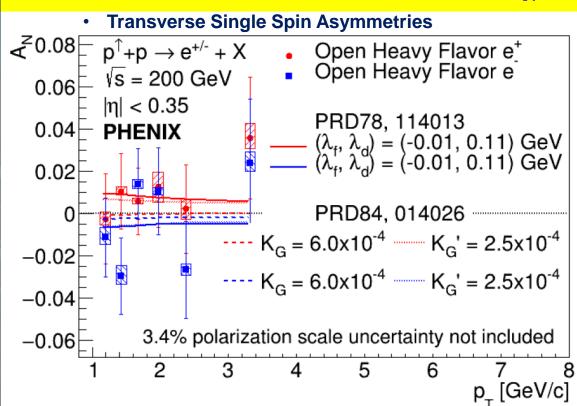


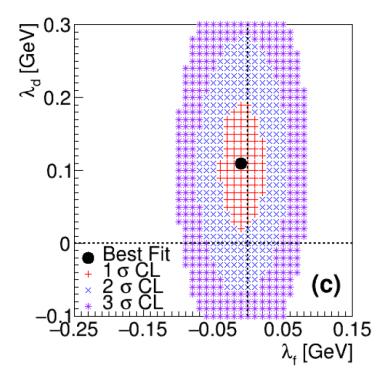
Direct photon is clean measurements

Dedication: "In the end, it took five students over 15 years to complete this analysis"

❖ First measurement directly sensitive to sign of ∆g $\rightarrow \Delta g < 0$ excluded at 2.8 σ level

Double helicity asymmetry isolated direct photons


Rachid Nouicer


Spin Results

Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in $p^\uparrow+p$ collisions at $\sqrt{s}=200~{
m GeV}$

N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. D **107**, 052012 – Published 29 March 2023

Measurement of A_N of heavy-flavor decay electrons

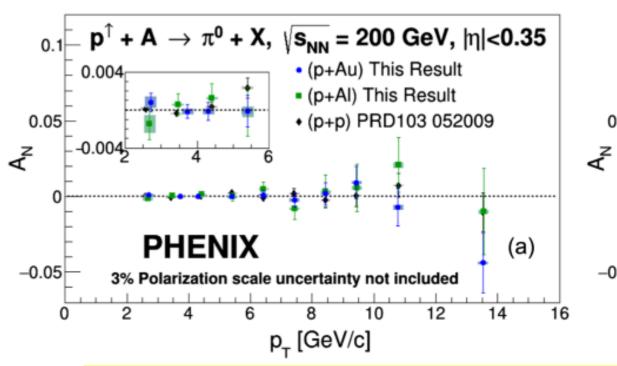
$$A_N(p^\uparrow + p \rightarrow HF(e^{+/-}) + X)$$

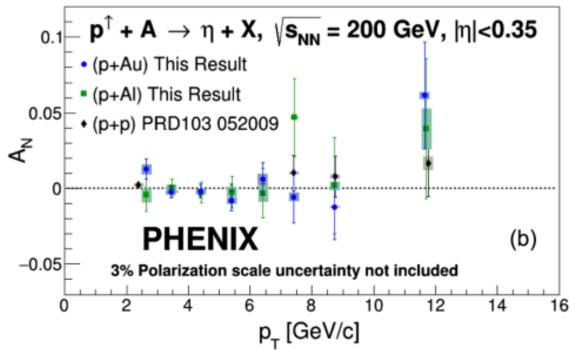
 $\sqrt{s} = 200 \text{ GeV}$
 $|\eta| < 0.35$

PHENIX

Theory: PRD78, 114013

$$A_N^{D^0/\overline{D}^0} \to e^{+/-}(\lambda_f, \lambda_d)$$


- Constraints on parameters of Tri-Gluon model by Z.Kang and J.W.Qiu
 - The first measurement on the parameters (λ_f, λ_d) of the model.

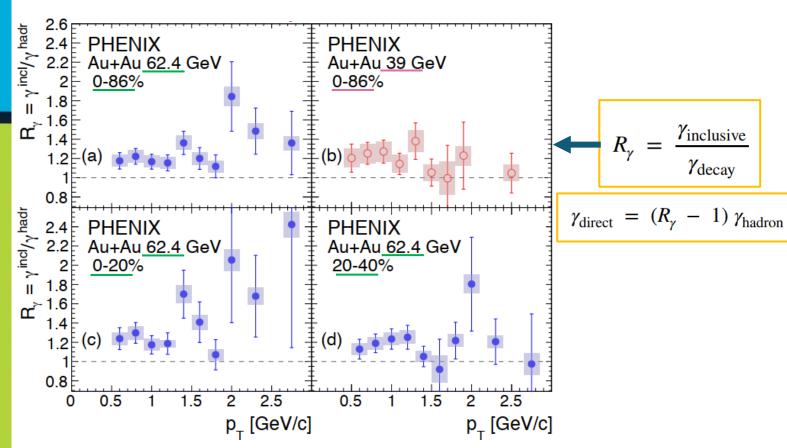

Spin Results

Transverse single-spin asymmetry of midrapidity π^0 and η mesons in $p+{
m Au}$ and $p+{
m Al}$ collisions at $\sqrt{s_{NN}}=200~{
m GeV}$

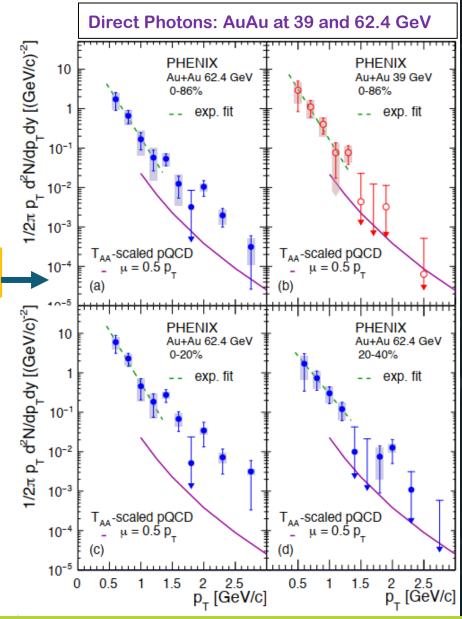
N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. D **107**, 112004 – Published 9 June 2023

First measurements of the transverse single-spin asymmetries (A_N) for neutral pions and eta mesons in p + Au and p + Al collisions at 200 GeV

- ❖ High precision measurements of the transverse single-spin asymmetries (A_N):
 - The measured asymmetries are consistent with zero up to very high precision in both collision systems for both meson species (π^0 and η).
 - Measurements show no evidence of additional effects that could potentially arise from the more partonic environments present in proton-nucleus collisions.


Published recently

PRC Editors' Suggestion

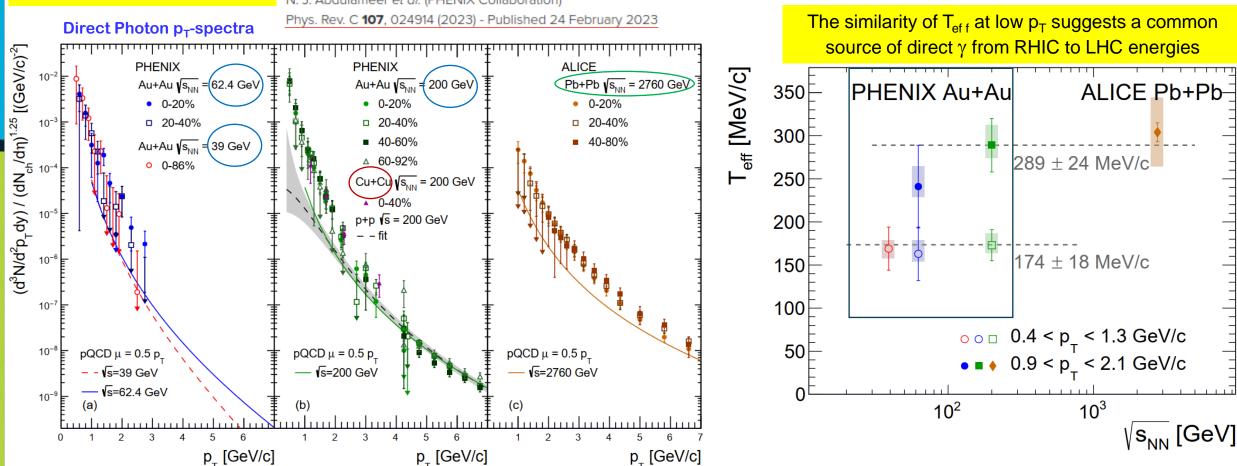

Low- p_T direct-photon production in $\mathrm{Au} + \mathrm{Au}$ collisions at $\sqrt{s_{NN}}=39$ and 62.4 GeV

N. J. Abdulameer et al. (PHENIX Collaboration)

Phys. Rev. C 107, 024914 (2023) - Published 24 February 2023

Observed significant direct photon yield relative to those from hadron decays in both energies in Au+Au collisions.

 $\gamma_{\text{inclusive}}$

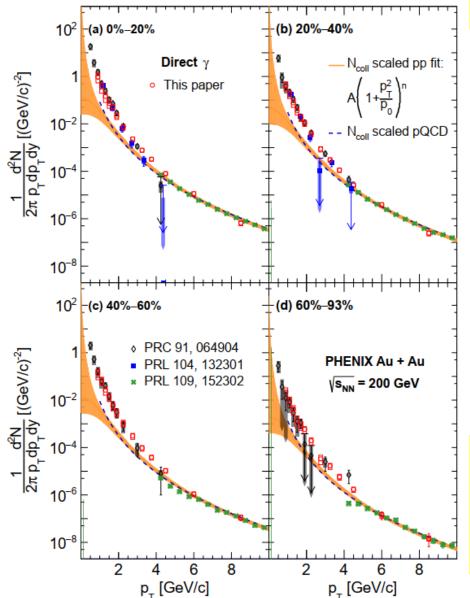

 $\gamma_{\rm decay}$

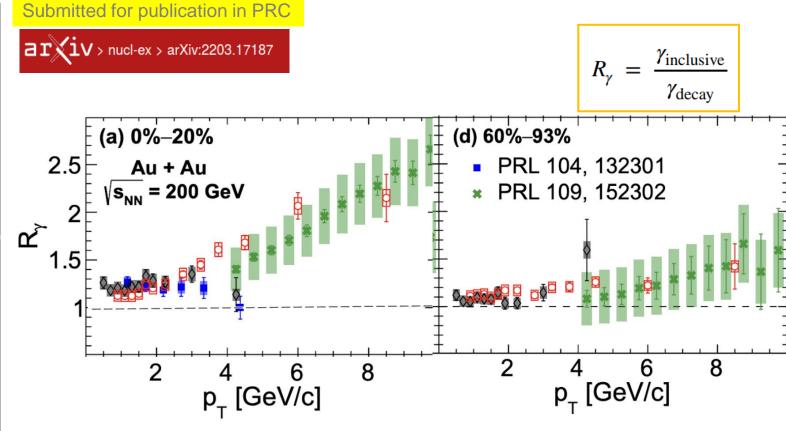
Low- p_T direct-photon production in ${
m Au+Au}$ collisions at $\sqrt{s_{NN}}=39$ and 62.4 GeV

Published recently

N. J. Abdulameer et al. (PHENIX Collaboration)

PRC Editors' Suggestion

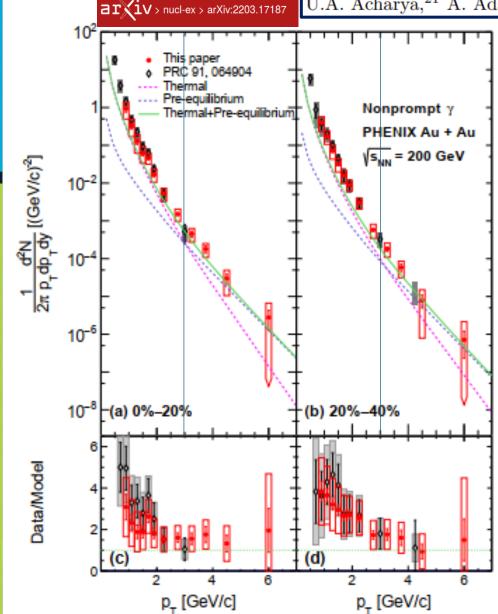



- ❖ Direct photons with p_T of up to a few GeV/c are expected to be dominantly of thermal origin
- These photons are radiated from a thermalized hot fireball of quark-gluon plasma
 - \triangleright Results from a fit to lowest p_T direct photon yields indicate T_{eff} = 174 ± 18 MeV

Rachid Nouicer RHIC/AGS 2023 10

Nonprompt direct-photon production in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$

U.A. Acharya,²¹ A. Adare,¹² C. Aidala,⁴² N.N. Ajitanand,⁶⁰, Y. Akiba,^{55, 56}, M. Alfred,²³ N. Apadula,^{28, 61}



- Current external photon conversion measurements (red) use data set with ~10× more statistics than previous published data.
 - Comparison with previous methods for direct photon measurements show good agreement → results are very robust
 - \triangleright For most central collisions, $R\gamma > 1$, indicating excess direct photon yield

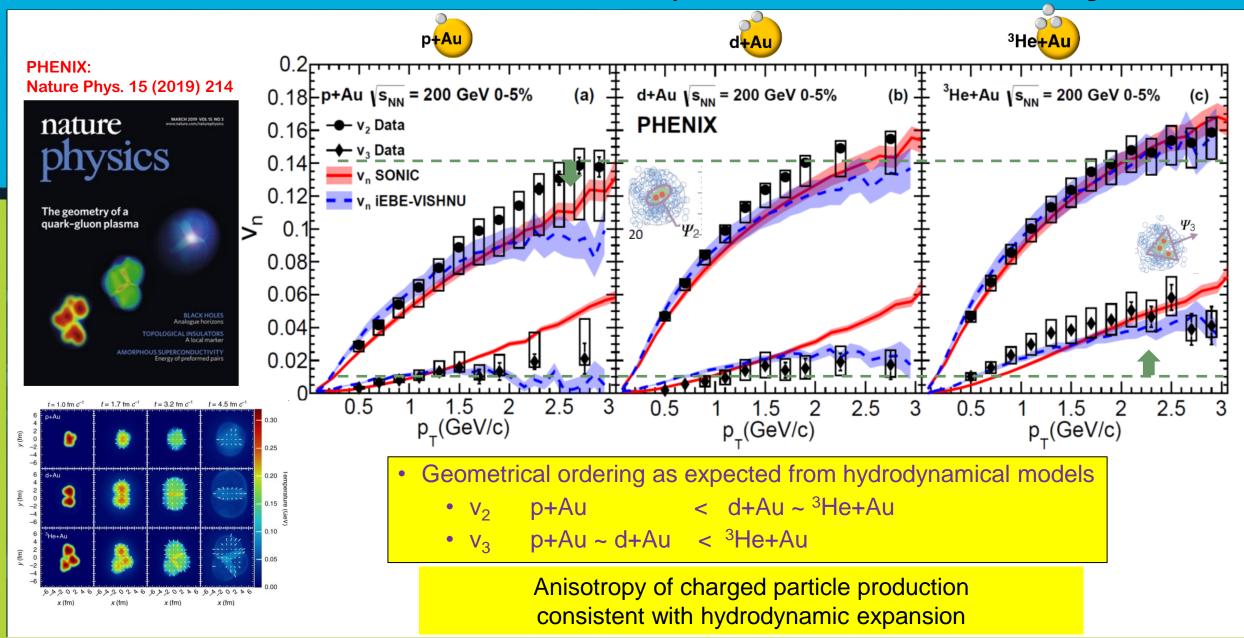
Nonprompt direct-photon production in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

U.A. Acharya,²¹ A. Adare,¹² C. Aidala,⁴² N.N. Ajitanand,⁶⁰, Y. Akiba,^{55, 56}, M. Alfred,²³ N. Apadula,^{28, 61}

PHENIX Nonprompt Direct Photon vs theory

Multimessenger heavy-ion collision physics

Charles Gale, Jean-François Paquet, Björn Schenke, and Chun Shen Phys. Rev. C **105**, 014909 – Published 14 January 2022


"The hybrid model used here describes all stages of relativistic heavy-ion collisions. Chronologically, those are an initial state reflecting the collision of nuclei described within the color glass condensate effective theory; a preequilibrium phase based on nonequilibrium linear response; relativistic viscous hydrodynamics, and a hadronic afterburner. The effect of the pre-equilibrium phase on both photonic and hadronic observables is highlighted for the first time. "

What have we learned?

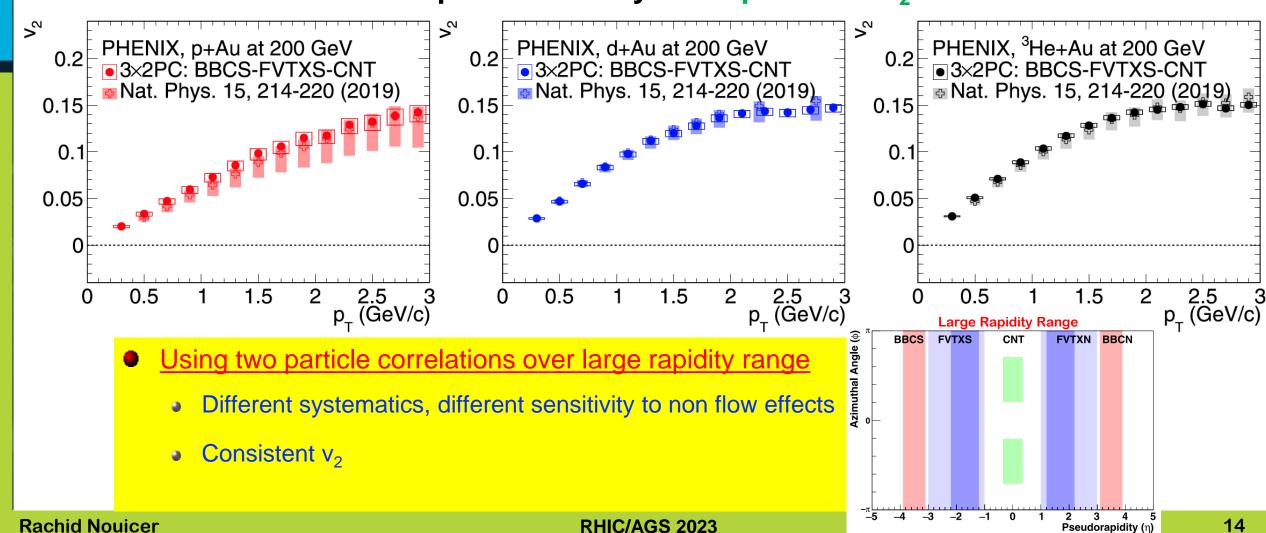
- Dominant contribution from pre-equilibrium above
 3 GeV/c in the model seems to align well with the data
- ❖ Overall yield falls short, especially below 2 GeV/c.

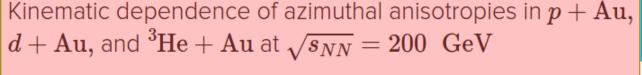
Rachid Nouicer RHIC/AGS 2023

Evidence of Formation of Small Droplets of QGP in Small Systems

Rachid Nouicer RHIC/AGS 2023

Kinematic dependence of azimuthal anisotropies in $p+{
m Au},$ $d+{
m Au},$ and ${
m ^3He}+{
m Au}$ at $\sqrt{s_{NN}}=200~{
m GeV}$


U. A. Acharya et al. (PHENIX Collaboration)
Phys. Rev. C **105**, 024901 – Published 3 February 2022


Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in $p+p,\,p+{\rm Au},\,d+{\rm Au},$ and $^3{\rm He}+{\rm Au}$ collisions at $\sqrt{s_{NN}}=200\,\,{\rm GeV}$

N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. C **107**, 024907 – Published 9 February 2023

New Cross Checks

Independent Study of Elliptic Flow v₂

U. A. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. C **105**, 024901 – Published 3 February 2022

Rachid Nouicer

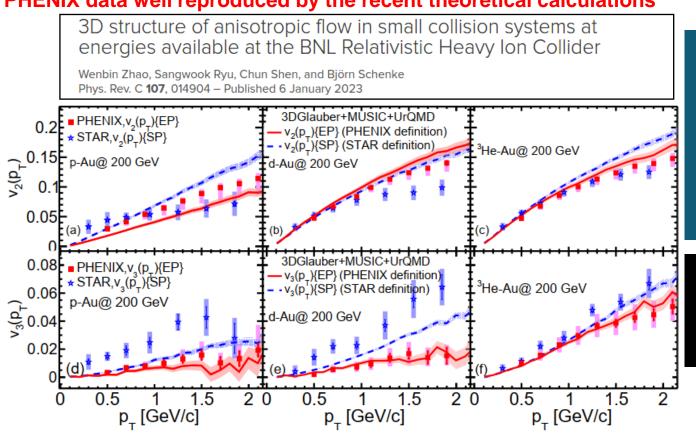
Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in $p+p, p+\mathrm{Au}, d+\mathrm{Au},$ and $^3\mathrm{He}+\mathrm{Au}$ collisions at $\sqrt{s_{NN}}=200~\mathrm{GeV}$

15

Pseudorapidity (η)

N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. C **107**, 024907 – Published 9 February 2023

New Cross Checks Independent Study of Triangular Flow v₃ PHENIX, ³He+Au at 200 GeV PHENIX, p+Au at 200 GeV PHENIX, d+Au at 200 GeV 0.08 0.08 ■ 3×2PC: BBCS-FVTXS-CNT ■3×2PC: BBCS-FVTXS-CNT ■3×2PC: BBCS-FVTXS-CNT Nat. Phys. 15, 214-220 (2019) Nat. Phys. 15, 214-220 (2019) Nat. Phys. 15, 214-220 (2019) 0.06 0.06 0.06 0.04 0.04 0.04 0.02 0.02 0.02 Real Imag. -0.02<u></u> 2.5 p_T (GeV/c) 2.5 3 p_{_} (GeV/c) 1.5 1.5 p_{_} (GeV/c) **Large Rapidity Range FVTXN BBCN** BBCS FVTXS Jsing two particle correlations over large rapidity range Different systematics, different sensitivity to non flow effects Consistent v₂ Confirm geometrical ordering of v₂ and v₃ Consistent v₃

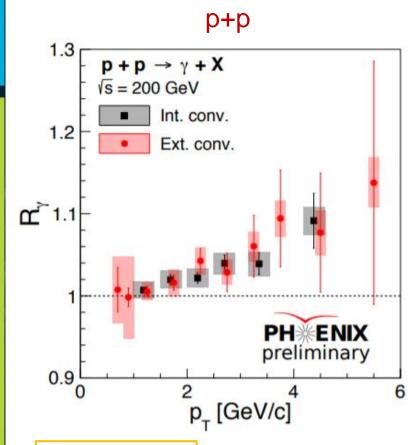

RHIC/AGS 2023

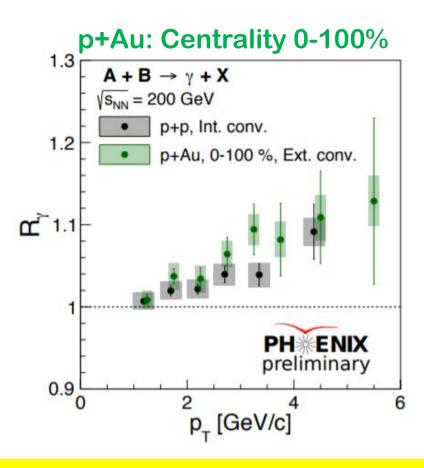
Kinematic dependence of azimuthal anisotropies in $p+{
m Au},$ $d+{
m Au},$ and ${}^3{
m He}+{
m Au}$ at $\sqrt{s_{NN}}=200~{
m GeV}$

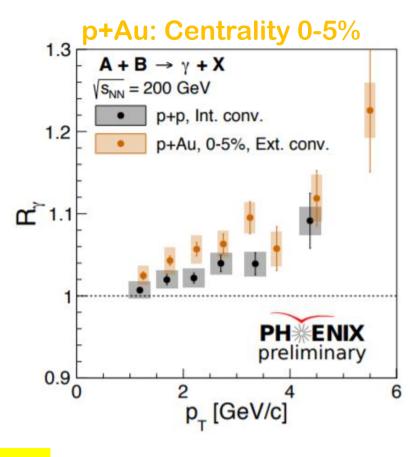
U. A. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. C **105**, 024901 – Published 3 February 2022 Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in $p+p, p+\mathrm{Au}, d+\mathrm{Au},$ and $^3\mathrm{He}+\mathrm{Au}$ collisions at $\sqrt{s_{NN}}=200~\mathrm{GeV}$

N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. C **107**, 024907 – Published 9 February 2023

PHENIX data well reproduced by the recent theoretical calculations

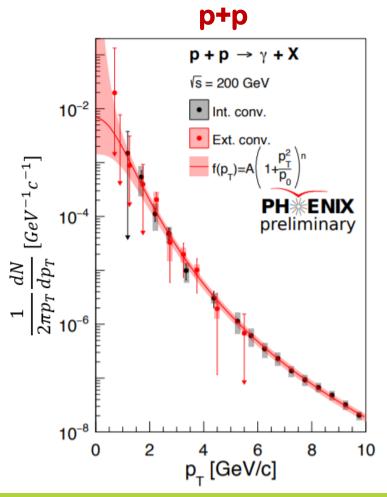

3D-GLAUBER +
MUSIC+URQMD:
dynamical initial state
model coupled to (3+1)D
viscous relativistic
hydrodynamics

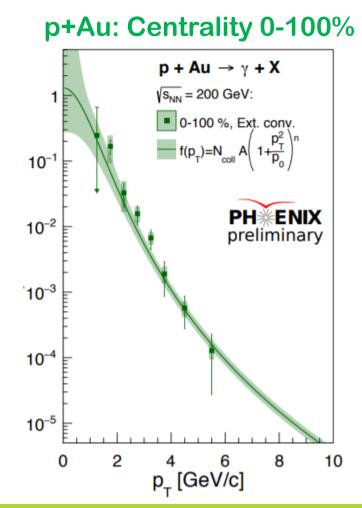

Importance of the <u>longitudinal</u> <u>flow decorrelations</u> in anisotropic flow measurements <u>asymmetric nuclear collisions.</u>

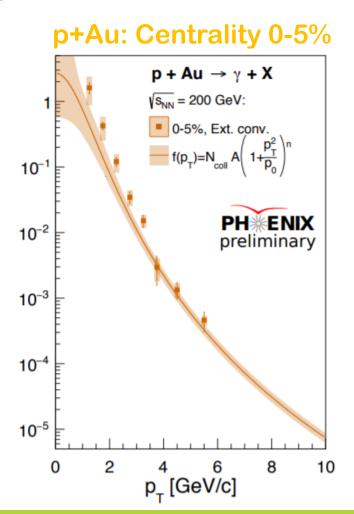

"Fig. 5 shows that the 3d glauber+music+urqmd model gives an overall good description of the PHENIX $v_n(p_T)$ data for d+Au and 3He+Au collisions. We underestimate the $v_2(p_T)$ in p+Au collisions by about 20-30%, possibly because of a too large longitudinal flow decorrelation in the model. "

Rachid Nouicer RHIC/AGS 2023 16

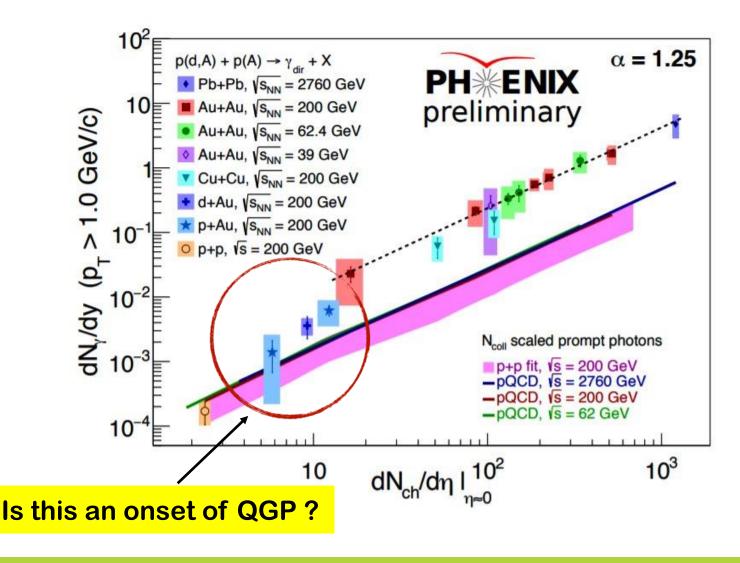
Direct photon measurements in p+p, p+Au collisions at 200 GeV



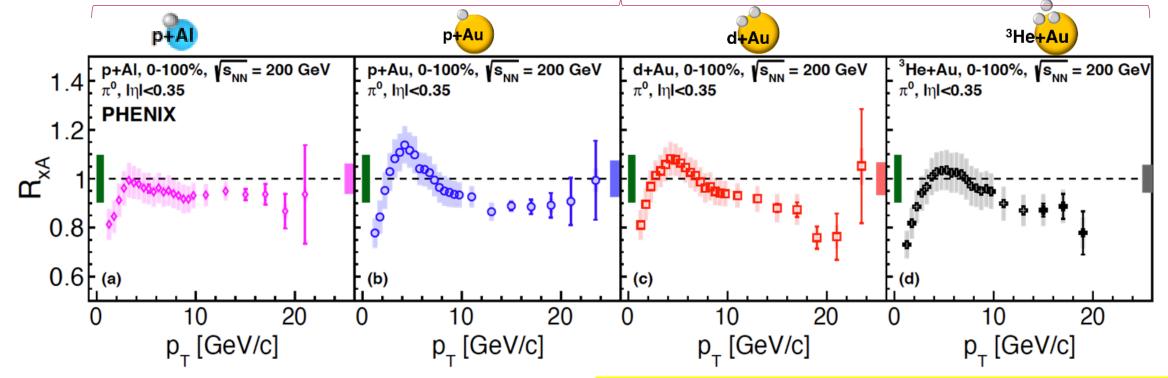

$$R_{\gamma} = \frac{\gamma_{\rm inclusive}}{\gamma_{\rm decay}}$$


Observed significant direct photon yield relative to those from hadron decays in small systems

Direct photon measurements in p+p, p+Au collisions at 200 GeV


Direct photon p_T -spectra $\rightarrow T_{eff}$

Direct photon measurements in p+p, p+Au collisions at 200 GeV

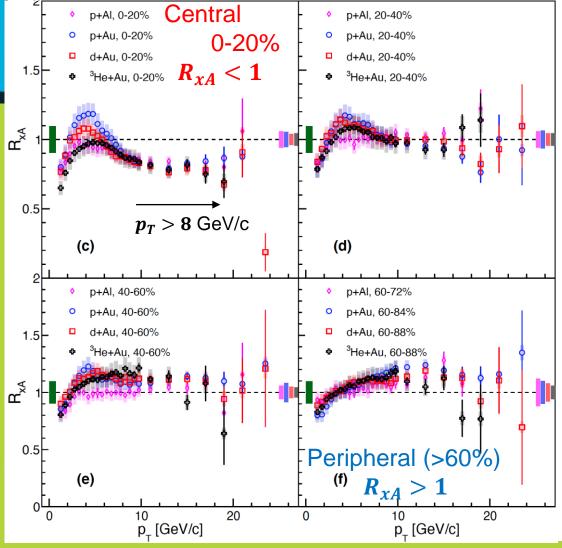


π⁰ measurements in p+Al, p+Au, d+Au, He+Au collisions at 200 GeV

Systematic study of nuclear effects in $p+{
m Al},\ p+{
m Au},\ d+{
m Au},$ and ${}^3{
m He}\,+\,{
m Au}$ collisions at $\sqrt{s_{NN}}=200$ GeV using π^0 production

U. A. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. C **105**, 064902 – Published 6 June 2022

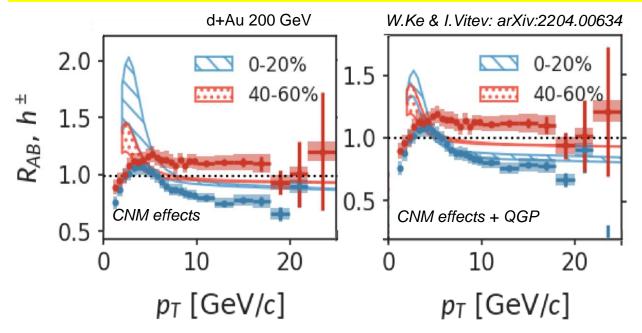
Minimum Bias: 0- 100% centrality Class


Obtained from measurements of Invariant Yield of π^0

$$R_{xA}(p_T) = \frac{Y_{xA}(p_T)}{\langle N_{coll} \rangle Y_{pp}(p_T)}$$

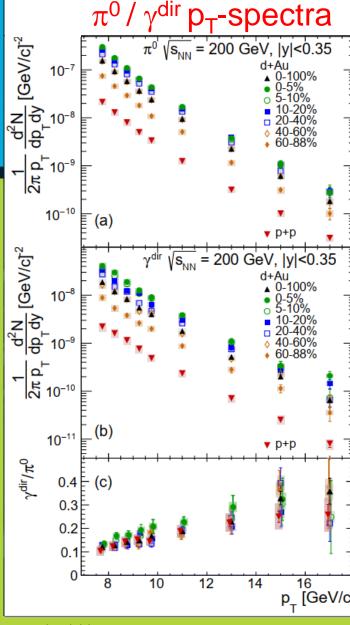
- Cronin peak in intermediate range $2 < p_T < 6$ GeV/c
 - Peak increase with "target" A in p+A
 - Broadening/decrease/shift of peak with increasing "projectile" p+Au → d+Au → ³He+Au

Rachid Nouicer RHIC/AGS 2023 2


Systematic study of nuclear modification factor of inclusive π^0 in small systems in different centralities.

Systematic study of nuclear effects in $p+{
m Al},\ p+{
m Au},\ d+{
m Au},$ and ${}^3{
m He}\,+\,{
m Au}$ collisions at $\sqrt{s_{NN}}=200$ GeV using π^0 production

U. A. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. C **105**, 064902 – Published 6 June 2022


- π⁰ R_{xA} from pAu, dAu, ³HeAu
 - Central: 20% suppression consistent with energy loss
 - Peripheral: 15 % enhancement unexplained, likely due to selection bias

Similar observations at RHIC & LHC

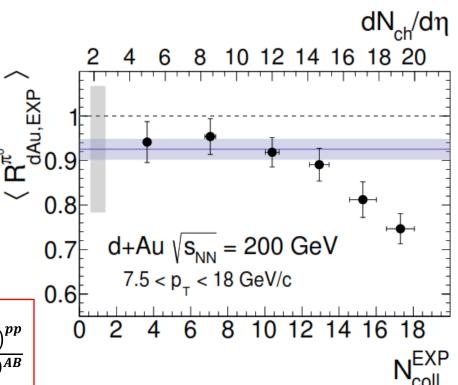
Inconclusive R_{xA} for high p_T in small systems bias or final state effects?

Disentangling centrality bias and final-state effects in the production of high- p_T π^0 using direct γ in $d+{\bf Au}$ collisions at $\sqrt{s_{_{NN}}}=200~{\bf GeV}$

Search for final state effects simultaneous measure direct γ and π^0

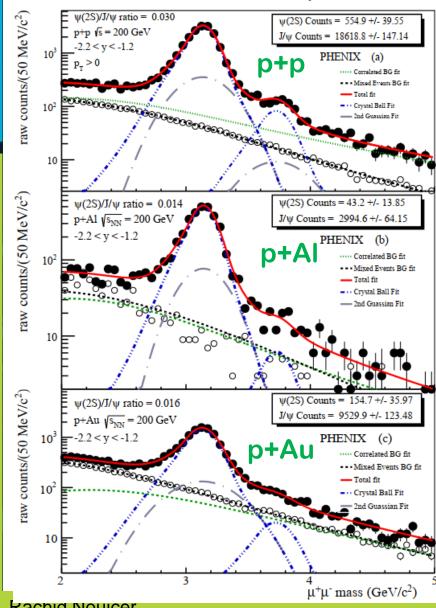
- No nuclear modification of direct γ
 - Au+Au direct γ scale with N_{coll}

$$R_{AB}^{\gamma^{dir}}(\boldsymbol{p}_{T}) = \frac{Y_{AB}^{\gamma^{dir}}(\boldsymbol{p}_{T})}{N_{coll}Y_{pp}^{\gamma^{dir}}(\boldsymbol{p}_{T})} \sim 1$$

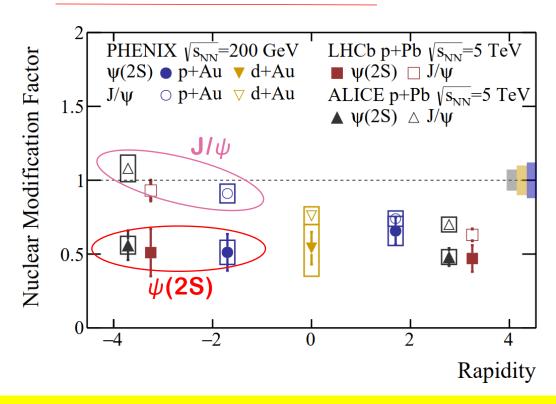

 Use direct γ to measure factor "N_{coll}" to scale hard scattering processes

$$N_{coll}^{EXP} = rac{Y_{AB}^{\gamma^{dir}}(p_T)}{Y_{pp}^{\gamma^{dir}}(p_T)}$$

Redefine Nuclear Modification Factor


$$R_{AB,EXP}^{\pi^{0}}(p_{T}) = \frac{Y_{AB}^{\pi^{0}}(p_{T})}{Y_{pp}^{\pi^{0}}(p_{T})} \times \frac{Y_{pp}^{\gamma^{dir}}(p_{T})}{Y_{AB}^{\gamma^{dir}}(p_{T})} = \frac{(\gamma^{dir}/\pi^{0})^{pp}}{(\gamma^{dir}/\pi^{0})^{AB}}$$

- First evidence for significant 20% final state suppression of high p_T π⁰ (7.5 to 18 GeV/c) in central 0–5% d+Au collisions
- Previously observed enhancement of π^0 R_{dAu} in peripheral events due to event selection bias Experimental determination of N_{coll} removes event selection bias
- Suppression of π^0 in most central collisions suggests possible energy loss due to QGP formation.


Invariant mass spectra

Measurement of $\psi(2S)$ nuclear modification at backward and forward rapidity in $p+p,\,p+{
m Al}$, and $p+{
m Au}$ collisions at $\sqrt{s_{NN}}=200~{
m GeV}$

U. A. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. C **105**, 064912 – Published 29 June 2022

Editors' Suggestion

- > J/ ψ and ψ (2S) modification similar at forward rapidity:
 - → Hint initial state effects dominate charmonium production
- PHENIX, LHCb, and ALICE at backward rapidity:
 - ψ (2S) is more suppressed than J/ψ : $R_{AB}(J/\psi) > R_{AB}(\psi(2S))$.

Rachid Nouicer RHIC/AGS 2023

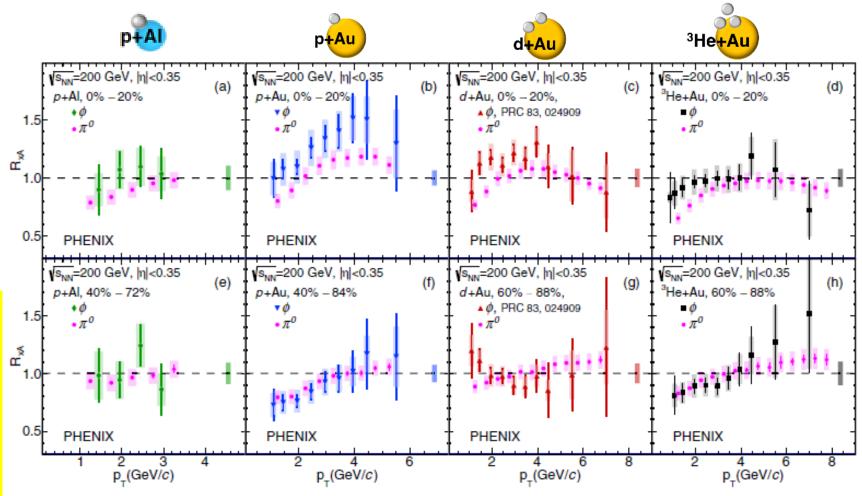
Summary

- Without doubt RHIC is amazing QCD machine
 - Many species, many energies, high luminosity, and very stable beam
- Spin Physics Results
 - Isolated direct photons measurements show ∆g is positive in polarized p+p collisions
 - Prob gluon dynamics through $A_N(HF)$ measurements in p+p collisions
 - High precision $A_N(\pi^0, \eta)$ at mid-rapidity: no nuclear modification in p+Al and p+Au collisons
- Large System AuAu at 200 GeV
 - Nonprompt γ^{dir} directly sensitive to early emission prior to hadron gas formation
- ➤ Small systems p+Al, p+Au, d+Au, ³He+Au at 200 GeV
 - v₂/v₃ consistent with geometrical ordering expected from hydro expansion and well reproduced by the recent theoretical model calculations.
 - First evidence for significant 20% final state suppression of high $p_T \pi^0$ (7.5 to 18 GeV/c) in 0-5% d+Au
 - Suppression $\psi(2S)$ at backward rapidity indication final state effect in p+Au collisions
- PHENIX is using Golden data (runs-12-16 high statistic); heavy flavor physics is under exploration. Careful analysis with new approaches are ongoing and many preliminary results will be submitted for publication soon.

Thank you!

Auxiliaries Slides

 ϕ meson production in $p+{
m Al},\,p+{
m Au},\,d+{
m Au},$ and ${
m ^3He}+{
m Au}$ collisions at $\sqrt{s_{NN}}=200~{
m GeV}$

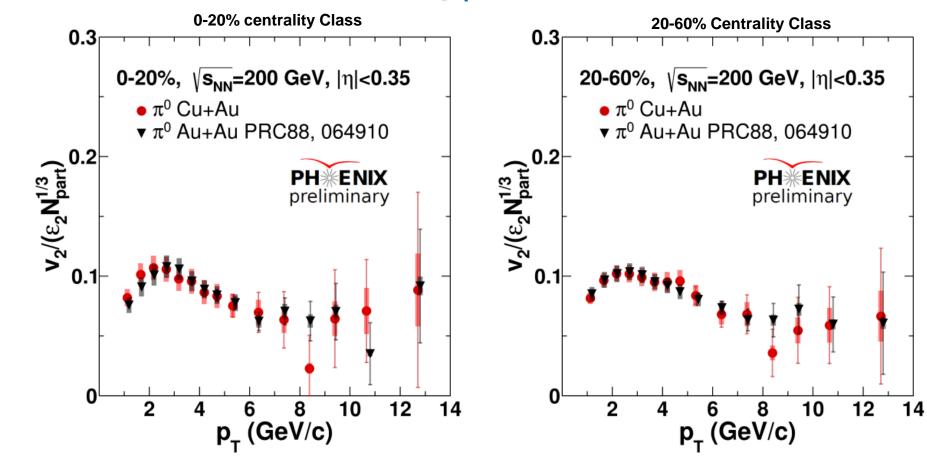

U. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. C **106**, 014908 – Published 26 July 2022

Strangeness (

Meson) Production in Small System

Remarks on ϕ production:

- ➤ In the early state of high-energy collisions, strangeness is produced in flavor creation $(gg \rightarrow ss, qq \rightarrow ss)$ and flavor excitation $(gs \rightarrow gs, qs \rightarrow qs)$. Strangeness is also created during the subsequent partonic evolution via gluon splittings $(g \rightarrow ss)$. These processes tend to dominate the production of high-p_T strange hadrons.
- The ϕ meson production in the most central collisions shows a trend to less suppression than the π^0 meson production at moderate p_T .
- The *RxA* for both mesons are in agreement within uncertainties.

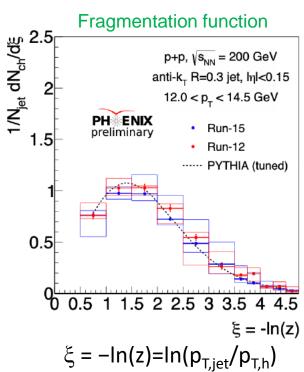

Within present statistic, comparison of ϕ (s, s⁻) to π ⁰ (u, d) shows no clear strangeness enhancement.

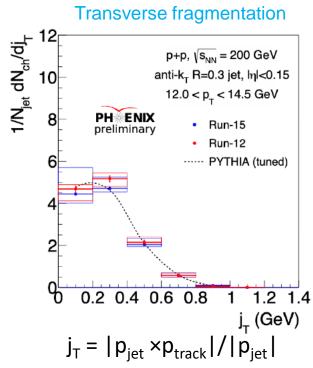
Rachid Nouicer RHIC/AGS 2023 2

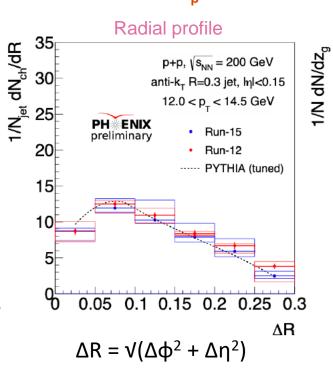
PHENIX New Analysis Results (Preliminary)

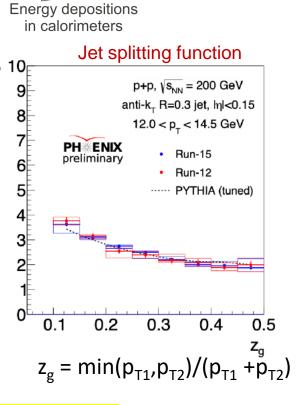
What else about π^0 ?

π^0 flow vs p_T in Cu+Au vs Au+Au

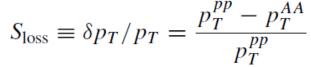

- In both system at the same energy, v₂ scales with eccentricity * system size (ε₂ * (N_{part})^{1/3}) even at high p_T, where this is not hydro...


PHENIX New Analysis Results (Preliminary)


Particle Jet

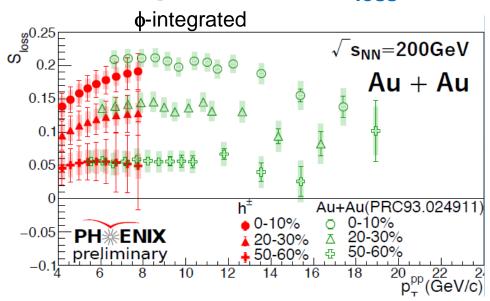

Parton level

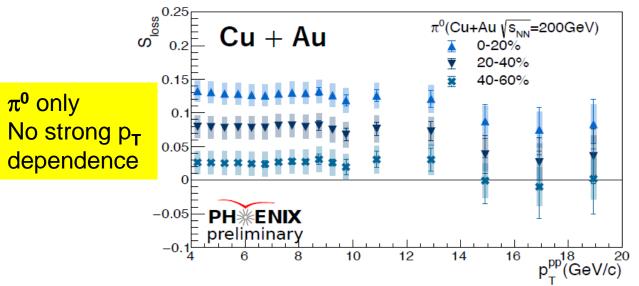
Jet substructure in p+p collisions

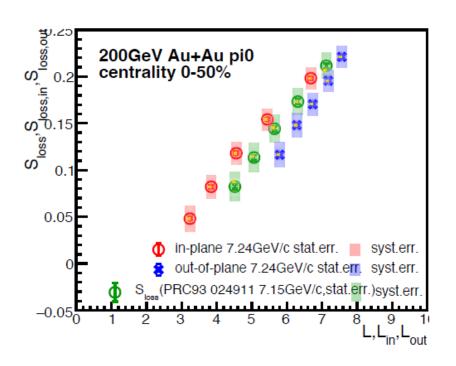


- PHENIX measured jet substructure in pp (shown for $12 < p_T < 14.5$ GeV jets)
- pp data from Run 12, 15; 2D unfolding and tuned PYTHIA (dashed lines)
 - Baseline for ongoing jet substructure measurements in p+A and A+A

PHENIX New Analysis Results (Preliminary)




Charged hadron S_{loss} vs reaction plane in A+B



π⁰ and h similar

φ-differential (in-plane, out-of-plane)

Different values and evolution with L in-plane and out-of-plane