Jet-Like Correlations in 200 GeV Au + Au Collisions

Anthony Hodges RHIC and AGS Users' Meeting

Thursday, August 3rd, 2023

NSF Ascend Fellow

Jets in Heavy Ion Collisions

- Presence of medium modifies
 parton kinematics
- Jets acts as experimentally accessible proxies for partons
- Measurement of jet modification allows us to measure partonic energy loss

Differential cross section

$$d\sigma = \int \int \int f_a^A(x_a) f_b^B(x_b) \cdot d\sigma_{ab \to cX} \cdot \frac{D_c^h(z)}{D_c^h(z)} dx_a dx_b dz$$

ModificationHeavy Ion Collision $D^h_c(z) \rightarrow D^h_c(z')$ as $p^{Parton} \rightarrow {p'}^{Parton}$

Anthony Hodges – UIUC, NSF Ascend Fellow

The PHENIX Detector

- Central arms
 - π coverage in azimuth
 - Pseudorapidity coverage of $|\eta| < 0.35$
- Electromagnetic calorimeter
 - Photon and electron energy
- Drift/Pad chambers
 - Charged hadron momentum
- Beam-beam counters (BBC)
 - Event characterization

Measuring Jets – Two Particle Correlations

- Pick a high momentum trigger particle (trigger≈jet)
- Correlate all the charged hadrons in the event to it

Extracted π^0 –Hadron Jet Functions

Extracted π^0 –Hadron Jet Functions

• Depletion ($I_{AA} < 1$) at high associate particle momentum

π^{0} -Hadron Correlations - D_{AA} vs. $\Delta \phi$

- Left: Suppression in the yield of high p_T associate hadrons
 - D_{AA} vs. $\Delta \phi$ shows suppression is most severe at $\Delta \phi \approx \pi$

π^0 -Hadron Correlations - D_{AA} vs. $\Delta \phi$

- Right: enhancement in the yield of low p_T associate hadrons
 - D_{AA} vs. $\Delta \phi$ shows enhancement is almost isotropic to within uncertainty

π^0 -Hadron Correlations - D_{AA} vs. $\Delta \phi$

• Hybrid model (1405.3864) w/ wake of low momentum particles captures behavior data very well

Direct photon - Hadron Correlations

- Here, direct photon takes place of π^0
- High $\xi \to \text{low } p_T$
- Low $\xi \rightarrow \text{high } p_T$
- Similar trends of enhancement and suppression
- Improvement possible by inclusion of later PHENIX data sets

Back-up

Underlying Event – Flow

$$\frac{dN}{d\Delta\phi} = b(1+2\sum \langle \boldsymbol{v}_n^t \rangle \langle \boldsymbol{v}_n^a \rangle \cos(n\Delta\phi))$$

- Model background as Fourier series in $\Delta \phi$ -space
- v_n terms quantify background shape, come from previous PHENIX analyses
 - Phys. Rev. Lett. 105, 142301
 - Phys. Rev. C 99, 054903

The Direct Photon Puzzle | K. Reygers

Underlying Event – Flow

$$\frac{dN}{d\Delta\phi} = \boldsymbol{b}(1+2\sum \langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi))$$
$$\boldsymbol{b} = \frac{\xi \langle N_{Trig} \rangle \langle N_{h^{\pm}} \rangle}{\langle N_{Pairs} \rangle}$$

- Amplitude given by Absolute Background Subtraction method for $p_T^{Hadron} > 1$ GeV/c
 - Phys. Rev. C 81, 014908

Underlying Event – Flow

• *b* from ZYAM (Zero Yield At Minimum) for $p_T^{Hadron} < 1$ GeV/c to account for over-subtraction

Improved Background Subtraction

- New results (right) from data from 2014, 3.3x more trigger π^0 's
- v_2 , v_3 ,and v_4 subtracted in new results \rightarrow flow contamination removed

Flow Subtraction – Acoustic Scaling

- Have charged hadron v_n^a for (n = 2,3,4) from PHENIX results
- No $\pi^0 v_3$ or v_4 measured at RHIC energies
- v_n harmonics can be scaled to one another via value g_n

Flow Subtraction – Acoustic Scaling

• Can calculate $\pi^0 v_3$, v_4 by scaling $\pi^0 v_2$ with charged hadron g_n