2023 RHIC/AGS ANNUAL USERS' MEETING

CELEBRATING NEW BEGINNINGS AT **RHIC and EIC** August 1–4, 2023

Measurement of Triton Production and Yield Ratio $(N_t \times N_p/N_d^2)$ in Au+Au Collisions at RHIC Beam Energy Scan

Dingwei Zhang

Central China Normal University August 1-4, 2023

QCD Phase Diagram and Critical Point

[1] http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Production of Light Nuclei in HIC

- Our understanding of the production mechanisms of light nuclei in relativistic heavy-ion collisions are currently incomplete
 - Thermal emission $N_A \approx g_A V (2\pi m_A T)^{3/2} e^{(A\mu_B - m_A)/T}$
 - Nucleon coalescence $N_A = g_c \int d\Gamma \rho_s(\{x_i, p_i\}) \times W_A(\{x_i, p_i\})$
 - Hadronic re-scattering $\pi NN \leftrightarrow \pi d, NNN \leftrightarrow Nd, NN \leftrightarrow \pi d \dots$

L. P. Csernai and J. I. Kapusta, Phys. Rept. 131, 223 (1986); R. Scheibl and U. W. Heinz, Phys. Rev. C 59, 1585 (1999); Y. Oh, Z.-W. Lin, and C. M. Ko, Phys. Rev. C 80, 064902 (2009); A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Nature 561, 321 (2018); J. Chen, D. Keane, Y.-G. Ma, A. Tang, and Z. Xu, Phys Rept. 760, 1 (2018); D. Oliinychenko, L.-G. Pang, H. Elfner, and V. Koch, Phys. Rev. C 99, 044907 (2019); K.-J. Sun, R. Wang, C. M. Ko, Y.-G. Ma, and C. Shen, (2022),arXiv:2207.12532

Formation Mechanisms of Light Nuclei

Dingwei Zhang

Institute of Modern Physics, Lanzhou

Searching for QCD Critical Point with LN

Nucleon Coalescence picture:

$$N_{d} = \frac{3}{2^{1/2}} \left(\frac{2\pi}{m_{0}T_{eff}}\right)^{3/2} N_{p} \langle n \rangle (1 + C_{np})$$
$$N_{t} = \frac{3^{\frac{3}{2}}}{4} \left(\frac{2\pi}{m_{0}T_{eff}}\right)^{3} N_{p} \langle n \rangle^{2} (1 + \Delta n + 2C_{np})$$

$$N_t \times N_p / N_d^2 = g(1 + \Delta n)$$

- In the vicinity of the critical point or the first order phase transition, density fluctuations become larger
- In the coalescence picture, nuclear compound yield ratio is sensitive to the baryon density fluctuations and can be used to probe 1st order phase transition and/or critical point in heavy-ion collisions

K.-J. Sun, L.-W. Chen, C. M. Ko, J. Pu, and Z. Xu, Phys. Lett. B 781, 499 (2018); E. Shuryak and J. M. Torres-Rincon, Phys. Rev. $O_{p1d}0^{-1}$ (2020); W. Zhao, K.-J. Sun, C. M. Ko, and X. Luo, Phys. Lett. B 820, 136571 (2021); K.-J. Sun, R. Wang, C. M. Ko, Y.-G. Ma, and C. Shen, (2022), arXiv:2207.12532; Che Ming Ko, Nuclear Science and Techniques (2023) 34:80

Dingwei Zhang

Datasets

Event Selection:

Energy(GeV)	Year	Vr(cm)	Vz(cm)	Event(M)
7.7	2010	2	40	2.37
11.5	2010	2	40	8.52
14.5	2014	1	40	16.69
19.6	2011	2	40	19.64
27	2011	2	40	38.42
39	2010	2	40	116.78
54.4 ^[1]	2018	2	40	566.15
62.4	2010	2	40	61.69
200	2011	2	30	465.07

[1] Hui Liu (For the STAR Collaboration), QM2019, Poster ID: 389

Track Selection:

\mathbf{nHits}	nHits/n	Hitsposs	ndEdxHits	DCA	$ \eta $	$ \mathbf{y} $	p_T
> 20	> 0.52		> 10	$< 1 \mathrm{~cm}$	< 1	< 0.5	> 0.2 GeV
Supervisional definition of the second secon	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>hnHits</u> Entries 2.214631e+10 Mean 1.406 Std Dev 34.18 60 40 20 30 40 51	$x = 10^{6}$	hnDedx Entries 2.214631e+10 Mean 0.7387 Std Dev 19.23	×10 ⁶ 900 800 700 600 500 400 300 100 0 0 0 0	Au-	hDca Entries 2.214631e+10 Mean 0.4923 Std Dev 0.506 +Au 39 GeV

Centrality Determination

http://www.star.bnl.gov/protected/common/common2010/centrality/index.html.

Particle Identification & Signal Extraction

Triton p_T Spectra

Blast-Wave Fit: E. Schnedermann, J. Sollfrank, and U. Heinz, PRC 48,2462 (1993)

Proton Feed-down Corrections

10

10 $d^2N)/(2\pi p_T dydp_T (GeV/c)^{-2})$ $\Lambda \longrightarrow p + \pi^{-}$, branching ratio = 63.9% $\Sigma^+ \longrightarrow p + \pi^0$, branching ratio = 51.57% $\Xi^- \longrightarrow \Lambda + \pi^-$, branching ratio = 99.887% $\Xi^0 \longrightarrow \Lambda + \pi^0$, branching ratio = 99.524% Au+Au 39GeV, 0-10% 10^{-4} $\Omega^- \longrightarrow \Lambda + K^-$, branching ratio = 67.8% Measured Corrected Λ 10^{-5} Embedding Weighted (Blast-Wave) A Embedding Weighted (Boltzmann) Λ $p_{_{\rm T}}$ (GeV/c) Correction Procedure: $(V/c)^{-2}$ Parameterized the strange hadron and proton 10spectra by Blast-Wave function Weight the embedding input Monte Carlo strange $)^{-3}$ particle to the corrected spectra Au+Au 39GeV, 0-109 Obtain the daughter proton Soning AuthAtheCollisions $)^{-4}$ (3)).() embedding, and scale by the weight factor from proton (Blast-Wave) from A proton (Boltzmann) from Λ step₁2. $p_{_{\rm T}}$ (GeV/c) eeting

Proton Feed-down Corrections

*Data driven method: Use STAR published strange particle yields

★From 7.7 – 200 GeV, proton feed-down fraction increases from 25% to 45%

STAR: Phys. Rev. Lett. 130, 202301 (2023); Phys. Rev. Lett. 97, 152301 (2006); Phys Rev. C 102, 034909 (2020)

Primordial proton p_T Spectra

*Mid-rapidity transverse momentum spectra for primordial protons

STAR: Phys. Rev. Lett. 97, 152301 (2006); Phys. Rev. Lett. 130, 202301 (2023)

 $\frac{1}{2} dN/dy$ for tritons increases with decreasing collision energy: yields driven by baryon density

 $* < p_T >$ decreases from central to peripheral collisions and with decreasing collision energy

Centrality Dependence of dN/dy & $< p_T >$

★Mass dependence of light nuclei yields (divided by the spin degeneracy factor) well described by exponential functions

* Average transverse momentum increase with increasing collisions energy and increasing particle

mass: influence of radial flow

STAR: Phys. Rev. C 96, 044904 (2017); Phys. Rev. Lett. 97, 152301 (2006); Phys. Lett. B, 655: 104–113, 2007; Phys. Rev. C 101, 024905 (2020); Phys. Rev. Lett. 130, 202301 (2023)

Particle Yield Ratios

*The triton results follow the trend of the world data, and thermal model overestimates the N_t/N_p ratios

V. Vovchenko, B. Dönigus, B. Kardan, M. Lorenz, and H. Stoecker, Phys. Lett. B , 135746 (2020);

★The effects of hadronic re-scatterings during hadronic expansion may play an important role in light nuclei production

K.-J. Sun, R. Wang, C. M. Ko, Y.-G. Ma, and C. Shen, (2022), arXiv:2207.12532

STAR: Rev. Lett. Phys. 130, 202301 (2023)
W. Reisdorf et al. (FOPI), Nucl. Phys. A 781, 459 (2007);
T. A. Armstrong et al. (E864), Phys. Rev. C 61, 064908 (2000);
S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 94 , 122302 (2005);
S. S. Adler et al. (PHENIX), Phys. Rev. C 69, 034909 (2004);
J. Adam et al. (ALICE), Phys. Rev. C 93, 024917 (2016)

$dN_{ch}/d\eta$ Dependence of LN Yield Ratio

The ratio monotonically decreases with increasing $dN_{ch}/d\eta$ and exhibits a scaling behavior: trend driven by interplay between the size of light nuclei and the size of fireball created in HIC

★The ratio can be described by the coalescence model,
but thermal model overestimates the data

The ratios at 19.6 and 27 GeV from 0%-10% centrality show enhancements to the coalescence baseline with a combined significance of 4.1 σ

Phys. Rev. Lett. 130, 202301 (2023)

Energy Dependence of Light Nuclei Yield Ratio

Phys. Rev. Lett. 130, 202301 (2023)

★Non-monotonic behavior observed in the energy dependence of the yield ratio from 0%-10% central Au+Au collisions around 19.6 and 27 GeV

*The yield ratio in peripheral (40%-80%) collisions exhibits a monotonic trend and the data can be well described by coalescence models within uncertainties

The significance of the enhancements decreases with decreasing p_T acceptance in the region of interest

(1) RHIC BES-II : Collider (Vs_{NN} =7.7 - 19.6 GeV) and FXT (Vs_{NN} = 3 - 7.7 GeV) mode

Stay tuned for the exciting physics from High Baryon Density !

*We report triton and primordial proton production in Au+Au collisions from RHIC-STAR BES-I

*The thermal model can describe the N_d/N_p ratio but not N_t/N_p ratio.

The light nuclei yield ratio $(N_t \times N_p/N_d^2)$ decreases monotonically with increasing $dN_{ch}/d\eta$ and exhibits a scaling behavior, which can be well described by the coalescence model. However, the thermal model over estimates the N_t/N_p and $N_t \times N_p/N_d^2$ ratio at RHIC energies, possibly due to the effect of hadronic re-scatterings during the hadronic expansion stage.

*Relative to the coalescence baseline, enhancements of the yield ratio $N_t \times N_p / N_d^2$ are observed in the 0%-10% most central collisions at 19.6 and 27 GeV with a combined significance of 4.1 σ . The enhancements are not observed in peripheral collisions and in model calculations without critical fluctuations.

