Al-based reconstruction for highly granular calorimeters

Bishnu Karki University of California, Riverside

2023 RHIC/AGS Annual Users' Meeting

05/03/2023

In Collaboration with: LBNL - B. Nachman, F. Torales-Acosta LLNL- A. Angerami, R. Soltz, P. Karande A. Sinha UCR: M. Arratia, K. Barish, S. Paul, R. Milton, S. Vasquez

DOE grant award number DE-SC0022355

- Traditionally only small number of detector configurations are considered
- Reconstructions algorithm not optimized for a given detector condition
- Allows to have high-fidelity fast simulation and optimized reconstruction algorithms

Our group is working on deploying Artificial Intelligence (AI) methods for EIC hadronic calorimeter design

- Generative models (fast simulation) arXiv: 23307.04780
- Reconstruction algorithm (Regression)

AI-Driven Detector Design for EIC

Some of the key questions that our AI-driven optimization approach could answer are:

- Given a certain budget, what is the best performance one can expect in longitudinal readout?
- For which angles would a high segmentation have the largest impact?
- Where should the longitudinal layers be placed?

To answer these, we want to train a network conditional on granularity (i.e. number of z sections and their locations).

We want to use this to explore a high dimensional space and compute tradeoffs

Outline

- Challenges of non-compensating calorimeters
- "software compensation" for non-compensating calorimeters
 - Traditional Methods
 - AI/ML-based approach
- Impact of longitudinal segmentation and transverse cell information (cell Z, and XY) on model performance

Non-Compensation in Hadronic Calorimeters

Non-compensating calorimeter (e/h ≠1)

Fig. arXiv:1710.10535v1

- Smaller response to hadrons compared to EM particles of the same energy
- Difference in visible signal for EM and purely hadronic energy deposits deteriorates energy resolution

Ways to deal with non-compensation

Hardware compensation

- Imposes very strict requirements on the materials used and the overall geometry. E.g <u>ZEUS</u> Uranium/Sc calorimeter
- Not a viable option due to cost and low beam at EIC

Software compensation ("offline")

- Assigning weights to EM and HAD energy deposits event by event
- As argued in the YR report, the potential of software compensation motivates longitudinal segmentation in calorimeters

"a fine granularity of a non-compensating calorimeter allows to improve the resolution by assigning weights to the detector signals ("off-line compensation)...at EIC such methods can be considered where a longitudinal segmentation of the ECAL and HCAL readout appears practical".

Software compensation has been around since at least 1980!

- CERN study of a longitudinally segmented Fe/Sc scintillator [H. Abramowicz et al., NIM 180 (1981) 429]
- Simple adjustment of cell event energy:

Software Compensation Experience

"Software compensation" was used from the beginning. Spatial structure of EM and hadronic component of showe used to classify energy deposits

Around 20 years later, in 2013, simple Neural Networks were introduced to improve the procedure and calibration.

Fact: H1 (non-compensating calorimeter) achieved the same energy scale uncertainty than ZEUS (compensating calorimeter). Both cases ultimately achieved 1% uncertain down to 10 GeV.

Modern software compensation with imaging calorimetry (CALICE Collaboration)

- Traditional methods, culmination of many decades of study
- Improves resolution by up to 30-40%

Deep Sets

JHEP 01 (2019) 121

- Deep sets are designed to operate on sets for permutation-invariant and variable length data
- Set collection of object without any order
- Each particle is mapped by Φ to an internal particle representation (latent space)

Case Study: Optimization of forward HCAL in ePIC detector

- Proton/ion beam has significantly larger kinetic energy compared to e⁻ beam
- Most of the hadrons are emitted in the same direction as the hadron beam ("forward direction")
- Granularity is key component to measure jets

HCAL and Insert:

Optimization Possibility in ePIC

- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily changed in practice (summing SiPM pulses) before readout.
- Default is 7 equidistant z-sections regardless of radius.
- Energy density varies with radius, so this is likely non-optimal

Detector Simulation and reconstruction

- Using standalone DD4HEP with simplified geometry similar to ePIC HCAL / insert
 - Single particle Geant4 Simulation
 - Particle: π^+ , Polar angle: $10 < \theta < 30$ deg, Azimuthal angle: $0 < \phi < 360$
 - Calorimeter Configuration: ECAL in front of HCAL
 - Segmentation: Longitudinal segmentation: 55 z-sections Transverse segmentation: 10 x 10 cm² (55 cells)
 - Point cloud representations of calorimeter showers
 - Established models to predict the generated energy from given cell information
 - With different number of Z- sections
 - With different input features (E, X, Y, Z)

Varying longitudinal segmentation Regrouping illustration with 5 z sections

	3821.5 4046.1		4270.8		4	4495.4 4		720.1 494		44.7 Z e	edges		
	3933.8	4158.5		4383	.1	4607.7		4832.4		z	centers		
			Е	Z	Y	x							
			[[0.028	3821.500	300.000	-1100.000]							
			[0.058	3844.900	300.000	-1100.000]							
			[0.092	3938.500	300.000	-1100.000]			Esum	Z centers	Y	Х	
↑			[0.070	3961.900	300.000	-1100.000]	Re-groupir	upina			000.000	4400 0001	
		<u> </u>	[0.109	3868.300	300.000	-1100.000]				3933.820	300.000	-1100.000]	
			[0.132	3891.700	300.000	-1100.000]			[0.016	4158.460	300.000	-1100.000]	
x			[0.116	3915.100	300.000	-1100.000]			0.003	4383.100	300.000	-1100.000]	
Źý			[0.001	4429.900	300.000	-1100.000]			0 001	4607 740	300 000	-1100 0001	
	Z		[0.001	4359.700	300.000	-1100.000]			_0.001		0001000		
			[0.003	4055.500	300.000	-1100.000]							
			[0.016	4008.700	300.000	-1100.000]	Regrou	ping in	real world	is just sum	ming SiPI	As outputs	
			[0.032	3985.300	300.000	-1100.000]		4.0	om scintillator tiles tra	ansfer PCB	-		
			[0.003	4032.100	300.000	-1100.000]	HGCROC read-out						
			[0.003	4125.700	300.000	-1100.000]	board		THE REPORT OF THE PARTY OF		hadrons		
			[0.001	41/2.500	300.000	-1100.000]		0		1 S & A & A & A & A & A & A & A & A & A &	10 cm		
x			[0.003	4078.900	300.000	-1100.000]			120 CM	8M tower module - 2 - 8 5 cm x 5 cm LFHCal	r module – 20 cm x 10 cm x 140 cm 15 cm LFHCal towers		
			10.001	4149.100	200.000	-1100.000]				LFHCal	LFHCal Option 1b		
			[0.001	4040.000	300.000	-1100.000]			wraped scivitiliator tile		15.2 m	n absorber	
			[0.001 [0.002	4102 300	300.000	-1100.000]	0	0 0 0		0.1 mm kapti 0.2	n + 0.05 mm glue mm reflective foil	0.25mm air gap	
	Z		10.002	4102.300	300.000	-1100.000]				PCII for signal transfer 0.5	4 mm 1	civiliator PM	
			[0.001	4336 300	300.000	-1100.000]		flex PCB for recuriting and signal t	transfer of 4 SIM	0.1 mm kapte	n + uuo mm pue	fes pcb 0,2mm 0,25mm är gap	
			[0.001	4289 500	300.000	-1100.000]					15.2 %		
			Loroo I		000.000								

Performance with Z- sections

- Baseline is sum of cell hit energy corrected by sampling fraction
- Resolution improves with larger number of Z-section (default configuration 7 section)

Performance longitudinal, transverse cell information

- 1D: cell hits E
- 2D: cell hits E, Z
- 4D: cell hits E, Z, X, Y

Resolution improves most given longitudinal cell information. Transverse cell information improves model performance at high energy

Comparison of performance with existing result

CALICE arXiv:1207.4210v2,2012

- CALICE Fe-Sc calorimeter similar in design
- Our baseline, CALICE uncorrected are sum of cell energy corrected by sampling fraction
- Al based methods yields better performance compared to traditional reconstruction methods

Conclusion:

- Established a point cloud based neural network models to predict the generated energy
 - Given different number of longitudinal segments
 - Given Transverse and longitudinal cell information (Z, XY)
- Resolution improves most given longitudinal cell information
- Transverse cell information improves model performance
- Al based reconstruction performs better than traditional reconstruction methods
 Outlook
- Manuscript in preparation
- Develop a model condition on Z-sections

Backup

Training input and tuned hyperparameters and architecture

- Used simulated data, 2 M π^+ events, Data splitted: Training, Validation, and Test
- Batch size =2048, number of layers=4, latent size = 64
- Each dense layer uses <u>Rectified Linear Unit (ReLu)</u> activation functions
- Adam optimizer, Mean Squared Error (MSE) for loss
- Trained until converges (approximately 100 Epochs)

Typical Gaussian Fit

