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Detector optimization

Generators that mimics detector conditions Reconstruction algorithm to produce physics 
object

● Traditionally only small number of detector configurations are considered 

● Reconstructions algorithm not optimized for a given detector condition 

● Allows to have  high-fidelity fast simulation and optimized reconstruction algorithms

Our group is working on deploying Artificial Intelligence (AI)  methods for EIC hadronic calorimeter design
● Generative models (fast simulation) 
● Reconstruction algorithm (Regression) 

arXiv: 23307.04780

https://arxiv.org/abs/2307.04780


To answer these, we want to train a network conditional on granularity (i.e. number of z 
sections and their locations). 

We want to use this to explore a high dimensional space and compute tradeoffs

Some of the key questions that our AI-driven optimization approach could answer are:
● Given a certain budget, what is the best performance one can expect in longitudinal readout?
● For which angles would a high segmentation have the largest impact?
● Where should the longitudinal layers be placed?

AI-Driven Detector Design for EIC
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Outline
● Challenges of non-compensating calorimeters

● “software compensation” for non-compensating

calorimeters

○ Traditional Methods 

○ AI/ML-based approach

● Impact of longitudinal segmentation and transverse cell information (cell Z, and 

XY) on model performance



Non-Compensation in Hadronic Calorimeters 

● Smaller response to hadrons compared to EM particles of the same energy
● Difference in visible signal for EM and purely hadronic energy deposits deteriorates energy 

resolution
5

Fig. arXiv:1710.10535v1

Non-compensating calorimeter (e/h ≠1)
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Hardware compensation 
○ Imposes very strict requirements on the materials used and the overall 

geometry. E.g ZEUS Uranium/Sc calorimeter
○ Not a viable option due to cost and low beam at EIC

Software compensation (“offline”)
○ Assigning weights to EM and HAD energy deposits event by event

○ As argued in the YR report, the potential of software compensation 
motivates longitudinal segmentation in calorimeters

Ways to deal with non-compensation

https://www.sciencedirect.com/science/article/pii/0168900291900947
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Software compensation has been around since at least 1980!

Poor energy resolution with 
no compensation

Cleaner Gaussian with 
software compensation

~20% improvement 
at high energies

● CERN study of a longitudinally segmented Fe/Sc scintillator [H. Abramowicz et al., NIM 180 (1981) 429]
● Simple adjustment of cell event energy:

○ Ecell, weighted = Ecell, unweighted(1 – C · Ecell, unweighted), C = 0.03/√Etotal
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“Software compensation” was used from the beginning.
Spatial structure of EM and hadronic component of showers 
used to classify energy deposits
 
Around 20 years later, in 2013, simple Neural Networks 
were introduced to improve the procedure and calibration.

Fact: H1 (non-compensating calorimeter) achieved the 
same energy scale uncertainty than ZEUS (compensating 
calorimeter). Both cases ultimately achieved 1% uncertainty 
down to 10 GeV.

Software Compensation 
Experience
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Modern software compensation with imaging calorimetry 
(CALICE Collaboration)

● Traditional methods, culmination of many decades of study
● Improves resolution by up to 30-40%

CALICE arXiv:1207.4210v2,2012 JINST 17 (2022) P08027

https://arxiv.org/pdf/1207.4210.pdf


10

Deep Sets 

● Deep sets are designed to operate on sets for permutation-invariant and variable length data 
● Set collection of object without any order
● Each particle is mapped by 𝚽 to an internal particle representation (latent space)

Fig. ATLAS PUB Note

JHEP 01 (2019) 121

arXiv: 1703.06114 

http://cds.cern.ch/record/2825379/files/ATL-PHYS-PUB-2022-040.pdf
https://arxiv.org/pdf/1703.06114.pdf


Case Study: Optimization of forward HCAL in ePIC detector

HCAL

ECAL
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● Proton/ion beam has 
significantly larger kinetic 
energy compared to e- beam

● Most of the hadrons are 
emitted in the same direction 
as the hadron beam (“forward 
direction”)

● Granularity is key component 
to measure jets

Figure Courtesy



Optimization Possibility in ePIC
- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily 

changed in practice (summing SiPM pulses) before readout. 
- Default is 7 equidistant z-sections regardless of radius. 
- Energy density varies with radius, so this is likely non-optimal

HCAL and Insert:

12Figure Courtesy



Detector Simulation and reconstruction

● Using standalone DD4HEP with simplified geometry 
similar to ePIC HCAL / insert

● Single particle Geant4  Simulation
○ Particle:  𝞹+,    Polar angle:  10< 𝝷 < 30 deg,               

Azimuthal angle:   0< ɸ< 360
○ Calorimeter Configuration: ECAL in front of 

HCAL

● Segmentation: 
Longitudinal segmentation: 55 z-sections
Transverse segmentation: 10 x 10 cm2 ( 55 cells)

● Point cloud representations of calorimeter showers

● Established models to predict the generated energy 
from given cell information

○ With different number of Z- sections 
○ With different input features (E, X, Y, Z) 13
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Re-grouping

Varying longitudinal segmentation
Regrouping illustration with 5 z sections

Z edges

Z centers

[[0.028    3821.500    300.000    -1100.000]
 [0.058    3844.900   300.000     -1100.000]
 [0.092    3938.500   300.000     -1100.000]
 [0.070    3961.900   300.000     -1100.000]
 [0.109    3868.300   300.000     -1100.000]
 [0.132   3891.700   300.000      -1100.000]
 [0.116   3915.100   300.000      -1100.000]
 [0.001   4429.900   300.000      -1100.000]
 [0.001   4359.700   300.000      -1100.000]
 [0.003   4055.500   300.000      -1100.000]
 [0.016   4008.700   300.000      -1100.000]
 [0.032   3985.300   300.000      -1100.000]
 [0.003   4032.100   300.000      -1100.000]
 [0.003   4125.700   300.000     -1100.000]
 [0.001   4172.500   300.000      -1100.000]
 [0.003   4078.900   300.000     -1100.000]
 [0.001   4149.100   300.000     -1100.000]
 [0.001   4640.500   300.000     -1100.000]
 [0.001   4242.700   300.000     -1100.000]
 [0.002   4102.300   300.000     -1100.000]
 [0.001   4195.900   300.000     -1100.000]
 [0.001   4336.300   300.000     -1100.000]
 [0.001   4289.500   300.000     -1100.000]]

E         Z                 Y               X 

[[0.656     3933.820    300.000    -1100.000]
 [0.016     4158.460    300.000    -1100.000]
 [0.003     4383.100    300.000    -1100.000]
 [0.001    4607.740    300.000     -1100.000]]

Esum     Z centers                 Y               X 

Regrouping in real world is just summing SiPMs outputs



 Performance with Z- sections 
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● Baseline is sum of cell hit energy corrected by sampling fraction
● Resolution improves with larger number of Z-section (default configuration 7 section)

baseline

baseline



Performance longitudinal, transverse cell information
● 1D: cell hits E
● 2D: cell hits E, Z
● 4D: cell hits E, Z, X, Y

Resolution improves most given longitudinal cell information. Transverse cell information improves model 
performance at high energy 16

baseline

baseline
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Comparison of performance with existing result

● CALICE Fe-Sc calorimeter similar in 
design

● Our baseline, CALICE uncorrected are 
sum of cell energy corrected by 
sampling fraction

● AI based methods yields better 
performance compared to traditional 
reconstruction methods

CALICE arXiv:1207.4210v2,2012
baseline

https://arxiv.org/pdf/1207.4210.pdf
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Conclusion:

● Established a point cloud based neural network models to predict the generated energy

○ Given different number of longitudinal segments

○ Given Transverse and longitudinal cell information (Z, XY)

● Resolution improves most given longitudinal cell information

● Transverse cell information improves model performance

● AI based reconstruction performs better than traditional reconstruction methods

Outlook
● Manuscript in preparation

● Develop a model condition on Z-sections



Backup
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Training input and tuned hyperparameters and architecture
● Used simulated data, 2 M  𝞹+  events,     Data splitted:  Training, Validation, and Test 

● Batch size =2048, number of layers=4, latent size = 64

● Each dense layer uses Rectified Linear Unit (ReLu) activation functions

● Adam optimizer , Mean Squared Error  (MSE) for loss

● Trained until converges (approximately 100 Epochs)

https://icml.cc/Conferences/2010/papers/432.pdf
https://arxiv.org/pdf/1412.6980.pdf
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Typical Gaussian Fit 


