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If there are any errors in the slides. I’m responsible.



Common Challenges
Why applying AI/ML to real experimental data so difficult?

• AI/ML is a data-driven method, real data do not have “ground 
truth” to train on. 

• Real data come in with large volumes and fast. 

6



Data Pipeline Diagram [EIC pre-CDR as example]
Data
Configuration & Control
Power

Detector FEB
(Front End Board)

FEP
(Front End Processor)

DAQ
(Data Acquisition)

Storage

ASIC

FPGA

Power Supply System
(HV, LV, Bias)

Cooling Systems

Fiber

LVDS ~ 5m
Analog ~ 20m

Fiber

L ~ 100 m
fiber

Global timing, busy & sync
Beam collision clock input

Monitoring

BW: O(100 Tbps) BW: O(10 Tbps)

Goal: O(100 Gbps)

FEB

FEB
FEP

Switch / 
Server / 

Link-
Exchange:

Readout

Switch / 
Server: 

Processing

Switch / 
Server: 
Buffer

EIC CDR

7



Lossless compression
• Compress by ~1/2  
• Well established fast compression 

algorithm
Lossy compression

• Opportunity for unsupervised 
machine learning based on data, 
e.g. 

• Auto-encoder on ASIC for HGCal @ 
CMS [link]

• Bicephalous Convolutional Neural 
Encoder for zero-suppressed data 
(next)

Online streaming data - compression
Lossless compression test 
[sPHENIX server 
procument]

Simple auto-encode neural network
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https://indico.fnal.gov/event/46746/contributions/210450/


Some detector ADC data is challenging for Auto-Encoder, 
e.g. features such as zero-suppression cut off

A dual-output auto encoder is designed to output both a 
region of interest and decompressed ADC. Possibility for 
further noise filtering

Ref: Y. Huang @ AI4EIC workshop [link], Paper 
[arxiv:2111.05423]

Bicephalous Convolutional Auto-
Encoder for zero-suppressed data

Compression comparison with published 
compressor tested on busiest sPHENIX TPC 
timeframes.
About 3000~4000 frames per second on 
A6000 GPU.
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https://indico.bnl.gov/event/10699/timetable/
https://arxiv.org/abs/2111.05423
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Finding Waveform Amplitude 

• Simulated LGAD waveforms.
• Goal: make network as small as 

possible.
• Lottery Ticket Hypothesis 

(pruning).
• Quantization-aware Training.
• MLP vs CNN.
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Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding 
sparse, trainable neural networks." arXiv preprint arXiv:1803.03635 (2018).



Results
Not much difference between 

three reset methods. (RR, 
LTH, CP)

MLP can be pruned up to a 
point.

Larger MLP can be pruned 
further.

CNN can be sparsified 
greatly without loosing 
accuracy.

Pruning & Quantization
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QAT+Pruning

• Ref:
• Y. Ren @Workshop IX on Streaming Readout [link]
• Miryala, S., Mittal, S., Ren, Y., Carini, G., Deptuch, G., Fried, J., ... & Zohar, S. (2022). Waveform 

processing using neural network algorithms on the front-end electronics. Journal of Instrumentation, 17(01), 
C01039. [link]

• Miryala, S., Zaman, M. A., Mittal, S., Ren, Y., Deptuch, G., Carini, G., ... & Katkoori, S. (2022, April). Peak 
prediction using multi layer perceptron (mlp) for edge computing asics targeting scientific applications. In 
2022 23rd International Symposium on Quality Electronic Design (ISQED) (pp. 1-6). IEEE. [link]
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https://indico.phy.ornl.gov/event/112/contributions/485/
https://iopscience.iop.org/article/10.1088/1748-0221/17/01/C01039/meta
https://ieeexplore.ieee.org/abstract/document/9806285


sPHENIX Test-beam data
• sPHENIX EMCal 2018 test-

beam data 
doi.org/10.1109/TNS.2020.3034643 

• Trained on waveforms from 
20 GeV incident electrons

• Ground truth (peak value) is 
provided by validated 
Template Fitting method.

• 3-layer CNN-1D models.
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http://doi.org/10.1109/TNS.2020.3034643


sPHENIX Test-beam data
• “dlayer 8/16”: channel size.
• y-axis is the fractional resolution 

(0.1 = a 10% sigma). The smaller 
the better.

• The CNN implementation has a 
larger resolution at low beam 
energies than more traditional 
approaches.

• Very similar performance observed 
in the region of 16-28 GeV 
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sPHENIX Test-beam data
• “dlayer 8/16”: channel size.
• y-axis is the fractional resolution 

(0.1 = a 10% sigma). The smaller 
the better.

• The CNN implementation has a 
larger resolution at low beam 
energies than more traditional 
approaches.

• Very similar performance observed 
in the region of 16-28 GeV 

The supervised AI/ML model’s accuracy 
is capped by the quality of data labels.
How to go beyond?
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Motivation
What AI/ML can do, without labeled training data?
Can we leverage prior knowledge (i.e. simulations)?
How to tackle the gap or discrepancy between simulation and 

experiments?

Simulations:
• Can get the fundamentals correct,
• Inexpensive to run, 
• Freedom of choosing parameters.

Experiments:
• Evidence for scientific advancement,
• Very expensive to run, 
• “Ground truth” unknown

“All models are wrong, but some are useful”. George E. P. Box
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Motivation

• Cause: difference between two data distributions (“domain 
shift”)

• Existing remedies:
• Data Augmentation. (Heuristics, domain-agnostic, use case-

dependent.)
• Domain Adaptation. (Task-specific, require trained model & data 

annotation.)
• Transfer Learning. (Require data annotation.)

Domain A
(Simulation)

Domain B
(Experiment)
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Task-agnostic Data Translation

• 𝐴 → 𝐵: “Augmented High-Fidelity Simulation” that can produce “labeled” data.
• 𝐵 → 𝐴: “Data Cleaning” that can remove noise of experiment data.
• Analysis tools (w/ human-intelligence) can have better and more data to work with.
• ML models have labeled data to train and are easier to transfer to the real data.

Domain A
(Simulation)

Domain B
(Experiment)

𝐴 → 𝐵

𝐵 → 𝐴

19

Directly translate or enhance simulation data 
to make them more realistic.
Ideally, the ground truth is retained during the 
translation, and systematic difference is  
bridged.



DUNE and LArTPC
Before doing this on real data, we would 
like to study a task under well-understood 
settings:
1. Domain A – simplified detector 

response, where a cloud of electrons 
is read only by the nearest wire. 

2. Domain B – realistic detector 
response, where a cloud of electrons 
can produce excitations in multiple 
wires. 

Also applicable for gas-medium TPC in 
both SPHENIX  and STAR.
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Unpaired Image-to-image translation
Unpaired constraint: since the ground truth of the experimental data 
is unknown, it’s impossible to generate matched simulation images.
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𝐴 → 𝐵

𝐵 → 𝐴



Unpaired Image-to-image translation
Unpaired constraint: since the ground truth of the experimental data 
is unknown, it’s impossible to generate matched simulation images.
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A popular way for generative tasks is GAN.
However, GAN is prone to “mode collapse”.

𝐴 → 𝐵

𝐵 → 𝐴



Unpaired Image-to-image translation
CycleGAN connects two sets of Generator and Discriminator.

* “Unpaired Image-to-Image Translation Using Cycle-Consistent 
Adversarial Networks” Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. 
Efros, Proceedings of the ICCV 2017
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https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
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https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf


Unet-ViT-CycleGAN (UVCGAN)

Adding a ViT block at 
the bottleneck of the 
Unet improves long-
range pattern 
learning.

Self-supervised pre-
training.

And other tricks.
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“UVCGAN: UNet Vision Transformer cycle-consistent GAN for unpaired 
image-to-image translation”, [arxiv: 2203.02557]

https://arxiv.org/abs/2203.02557


UVCGAN fixes rough edges

26



Results
We have compared our model 
(UVCGAN) vs advanced models: 

1. ACL-GAN arXiv:2003.04858 
2. CycleGAN arXiv:1703.10593 
3. U-GAT-IT arXiv:1907.10830 

arxiv: https://arxiv.org/abs/2304.12858 (under revision)
data released: https://zenodo.org/record/7809108#.ZDV0B-zMKvB

A->B
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https://arxiv.org/abs/2304.12858
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Key Takeaway: The model is trained on unpaired data, 
but translation can satisfy the test on pixel-wise metrics. 

https://arxiv.org/abs/2304.12858


UVCGAN-v2, on open-benchmark data
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“Rethinking CycleGAN: 
Improving Quality of GANs for 
Unpaired Image-to-Image 
Translation” [arxiv: 2303.16280] 
[github.com/LS4GAN/uvcgan2]

https://arxiv.org/abs/2303.16280


Jet Data Generation
Data Generation:

• Domain A background and jet samples were 
generated using Pythia and HIJING respectively.

• Generated events are then passed through a 
geant mock up of the sPHENIX calorimeter 
system to better reproduce real measurements.

• Domain A:
• Heavy Ion Background (HIJING, 0-10% 

centrality events)
• Jets (Pythia, Flows Afterburner, etc.)

• Domain B:
• Samples are combined with a straight addition 

of the energy depositions. 
• In future, +M, and real experimental data.

• Instances from A and B are Unpaired.

Jet

Background

Domain B
Combined 

B+J

𝐴 → 𝐵

𝐵 → 𝐴

Another talk: “Interpretable Machine Learning Methods for 
to Jet Background Subtraction in Heavy Ion Collisions”
Speaker: Mr Tanner Mengel (University of Tennessee) 

Jet Embedding

Background Subtraction
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Two-Stage Approach

31

Stage-1

Stage-2



Results on Background Generation
Preliminary HIJING

Generated
HIJING
Generated

HIJING
Generated

HIJING
Generated

0.1 cluster energy [GeV] 0.4 cluster energy [GeV]

0.7 cluster energy [GeV] event energy [GeV]

Comparing 
Distributions:
• 1x1
• 4x4
• 7x7
• event-level
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Asymmetric CycleGAN
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Preliminary Results on 𝑨 ↔ 𝑩 

30/36
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Pythia+HIJING
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Future Study
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• These are very early results that we are excited to share.
• In future, we will incorporate “media modification” 

(Jet+Backgrounds).
• Any suggestions and comments would be very helpful.
• How to validate when we apply this to real experimental data?
• Any other constraints we should consider?



Collaborators & Ack.
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Ø LDRD-19-028     High-Throughput Advanced Data Acquisition for eRHIC, Particle Physics and 
Cosmology Experiments

Ø LDRD-21-023     Towards Edge Computing: A Software and Hardware Co-Design Methodology for 
ASIC-based Scientific Neuromorphic Computing

Ø LDRD-21-029     Bridging the Gap between Scientific Simulations and Experiments
Ø with Cycle-Consistent Generative Models 
Ø LDRD-22-018     Real-time Image Classification using Machine Learning
Ø LDRD-23-048     Real-time Information Distillation on Novel AI Hardware

• Timothy Rinn, Yeonju Go, Jin Huang, David Morrison
• Dmitrii Torbunov, Haiwang Yu, Brett Viren, Chao Zhang, Xin Qian
• Piotr Maj, Soumyajit Mandal, Prashansa Mukim, Grzegorz Deptuch, Gabriella Carini
• Elizabeth Brost, Haider Abidi , Viviana Cavaliere, Michael Begel
• Yi Huang, Shubha Khrael, Meifeng Lin, Shinjae Yoo 
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We are hiring!

Thank You!
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Yihui “Ray” Ren 
<yren@bnl.gov>


