

Tracking with a Graph Neural Networks

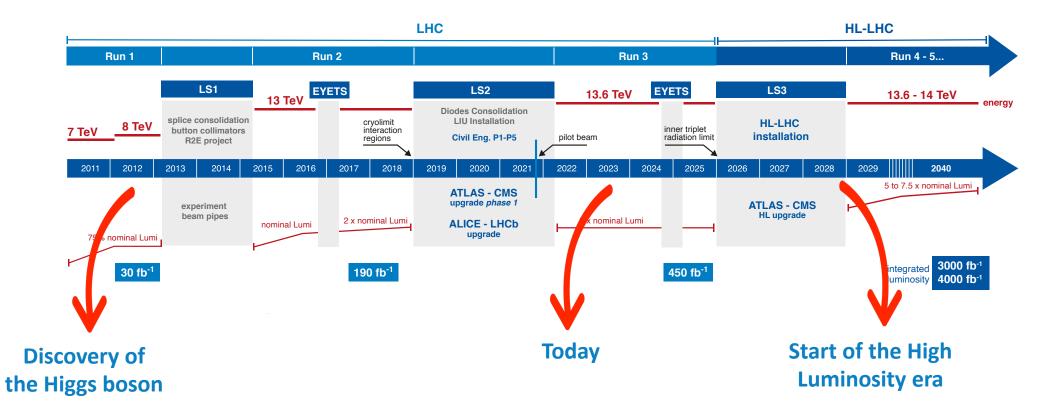
RHIC/AGS Annual Users' Meeting

1^{*st*} August 2023

Charline Rougier

Laboratoire des 2 Infinis - Toulouse

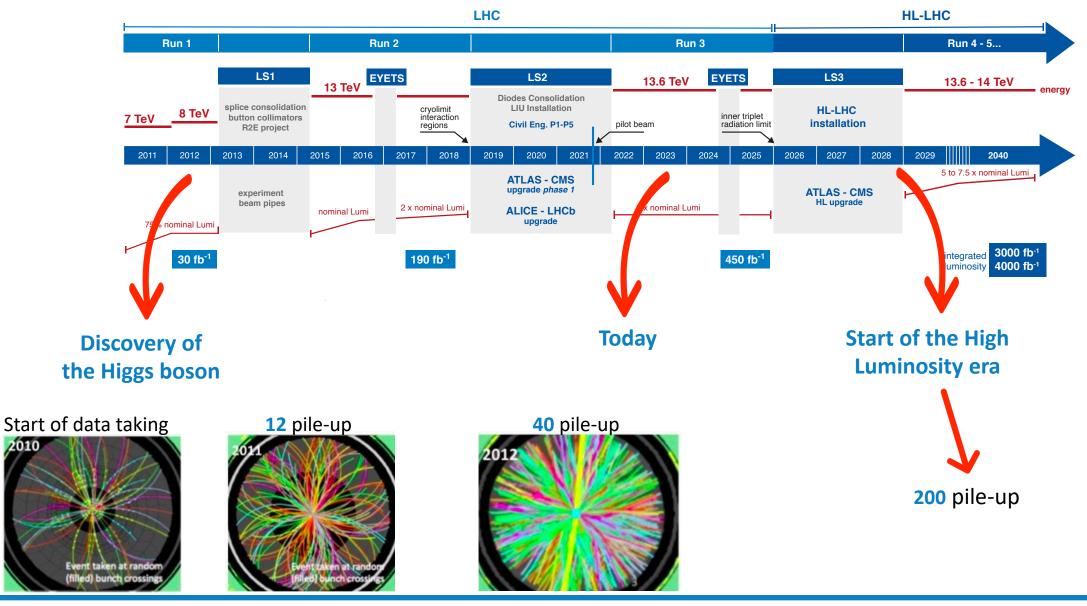
The LHC upgrade: HL-LHC era



Physics run to start in 2029

Increase by one order of magnitude the integrated luminosity collected by ATLAS and CMS

The LHC upgrade: HL-LHC era

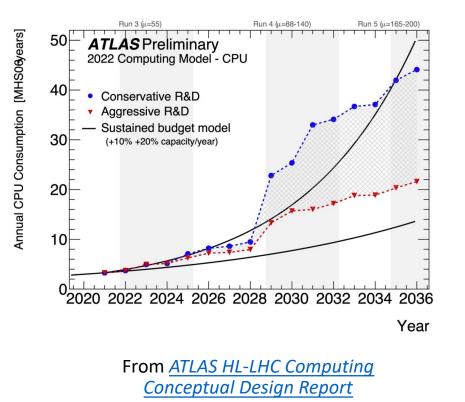


.AS

LHC High Luminosity upgrades

- The LHC upgrade: HL-LHC era
- Increase in event complexity: $\langle \mu \rangle \approx 200$
- Increase in data taking rate
- ATLAS detector upgrades: new Inner Tracking detector ITk included

Brings unprecedented challenges for software and computing.



The offline reconstruction of ITk data represents about **20%** of computing resource needs.

Potential improvements:

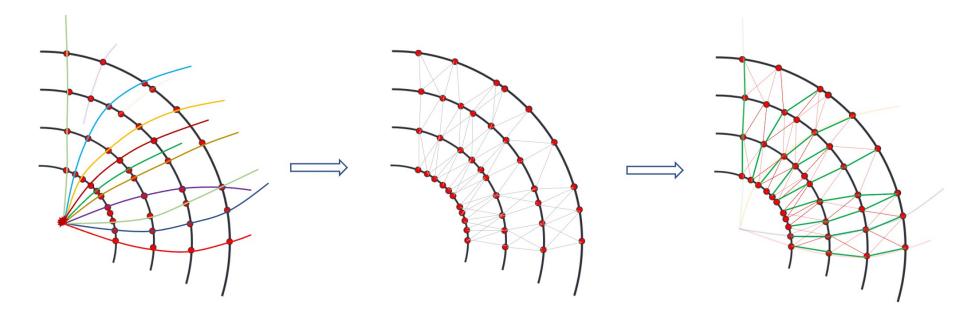
- Hardware updates, better CPUs, new chip architectures...
- **Software** updates, including machine learning.

Machine learning applied to tracking

• Track reconstruction = CPU-intensive stage

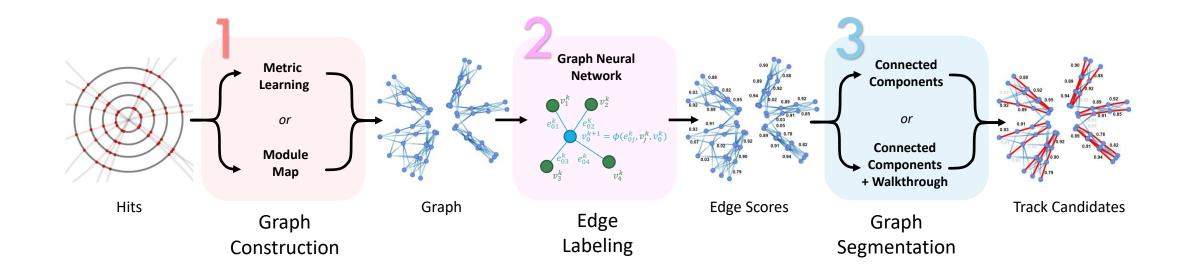
ML techniques running on GPUs ? Raw data from tracking detectors are sparse data

• Graph Neural Networks (GNNs): proof of principle by Exa.TrkX project



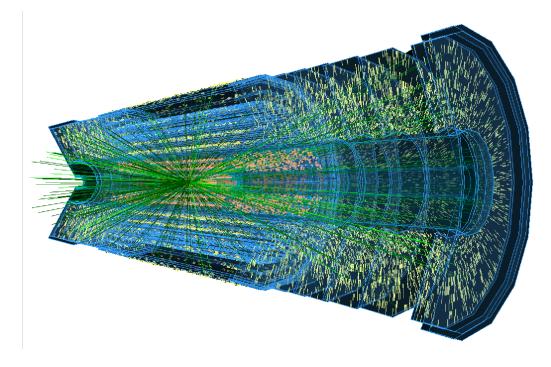
Machine learning applied to tracking

• Development of a pipeline based on a Graph Neural Network



Simulated sample

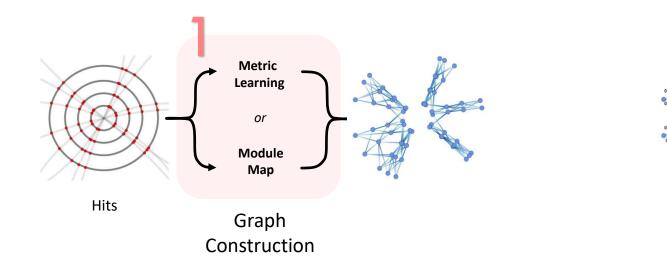
- ATLAS simulated sample: $t\bar{t}$ with $\langle \mu \rangle = 200$ at $\sqrt{s} = 14$ TeV
 - About 100k events available
 - About 10k charged particles per event
 - About 300k space-points per event



• Define target particles

- $\implies p_T > 1 \text{ GeV}$
- No secondaries
- No electrons
- At least 3 space-points in the detector

Dominated by soft interactions



charline.rougier@l2it.in2p3.fr

Graph representation of tracking data

Node = 1 space-point

- **Edge** = connection between two nodes.
 - Existence of edge = the 2 nodes could potentially represent 2 successive space-points on the same track.

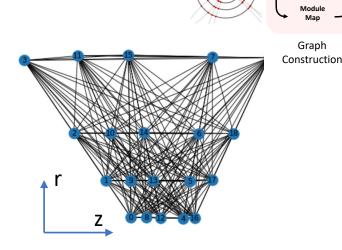
O(300k) space-points in an event => fully connected graph $O(10^{10})$ edges Comprises unphysical connections

Key question of graph construction:

How de we choose the connections between nodes ?

Graph construction is one of the most important parts of a GNN tracking pipeline:

- High efficiency is mandatory: so far lost edges means incorrect track reconstruction
- Graph topology has a huge influence on the performance of a GNN model



Example with 19 hits in the (z,r) plane

Graph creation: the module map

Module Map

Training stage

Graph Construction

Edge creation

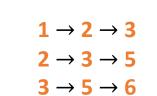
The path of a target particle is followed inside ITk to record all possible **connections** between triplet of silicon **modules**.

6

5

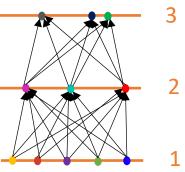
3

Connections record :



The Module Map is built using 90 000 events. It comprises **1 242 665** connections.

Edges are created following the connections of the Module Map.

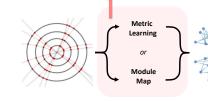


Direction "inside-out" are given to edges.

O(billions) edges

additional pruning applied to reduce to O(1.3 million) edges

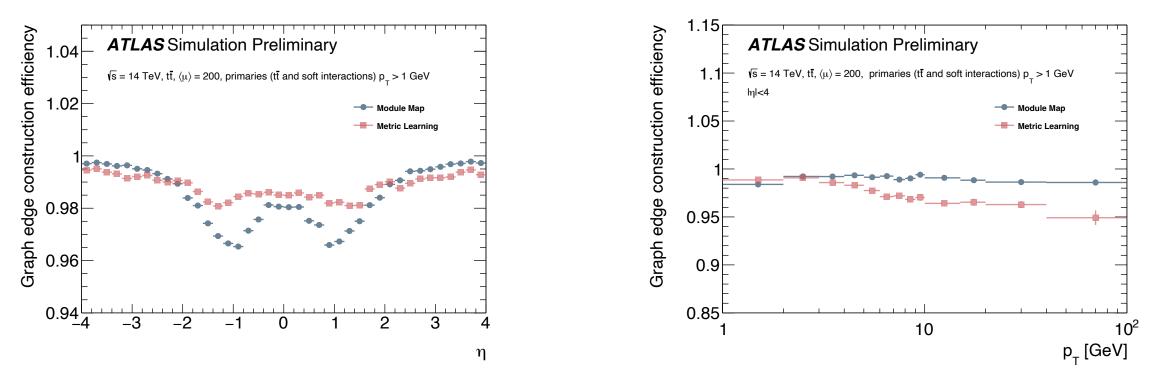
Graph edge construction efficiency



Graph Construction

Graph edge construction efficiency

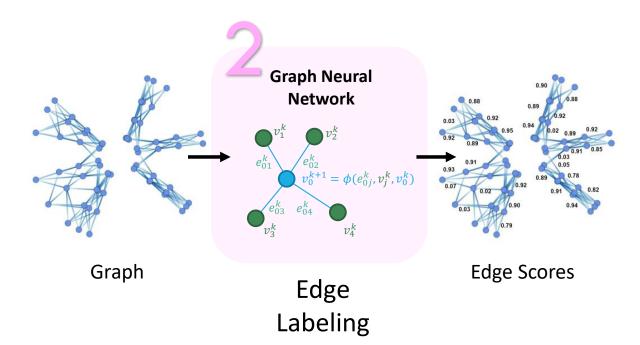
High efficiency is a necessity: an edge lost during the graph construction can't be recovered later.

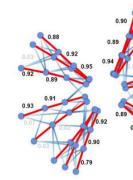


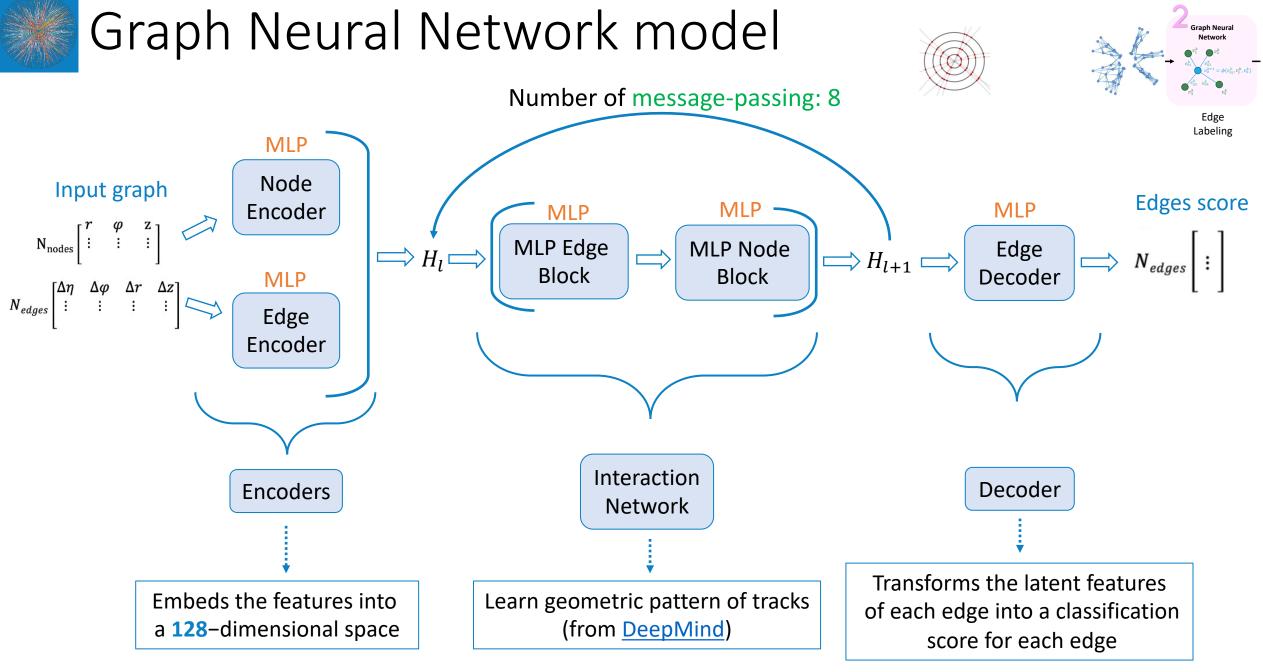
In the following the module map is the method used to build graphs.

The graphs built have 100% efficiency (events have been used during the module map creation).



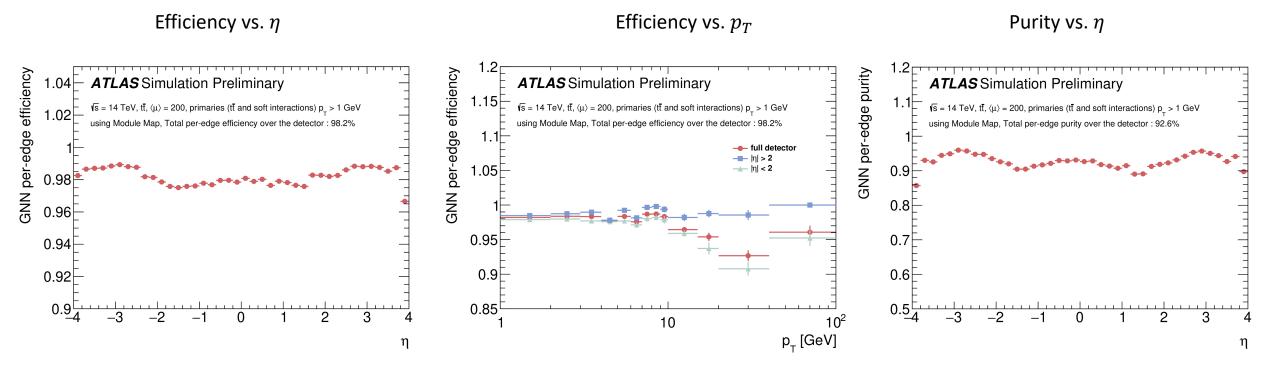


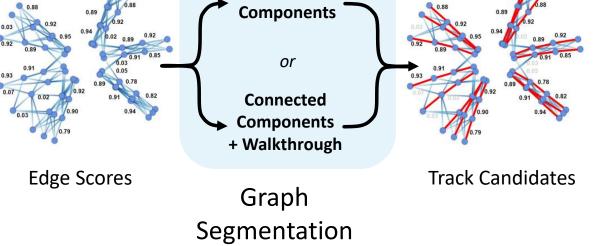




GNN edge-level performance

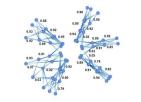
Edge Scores

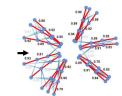




Connected

Building track can ites





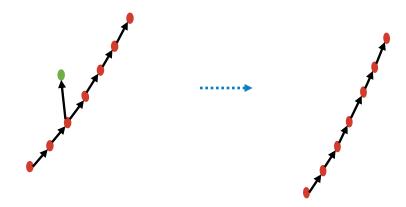
Track Candidates

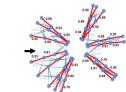
• Step 1: connected component

- This stage is intended to prune the graph from fake edges.
- Apply a very low edge score cut: 0.01
- 1.3M edges -> 30k edges

• Step 2: additional filtering, if needed

If further selections are needed, applied an iterative algorithm which used higher cut on the edge classification score.





Track Candidates

• Evaluation of the track candidates

No track fit is applied.

Evaluation done on $t\bar{t}$ + PU.

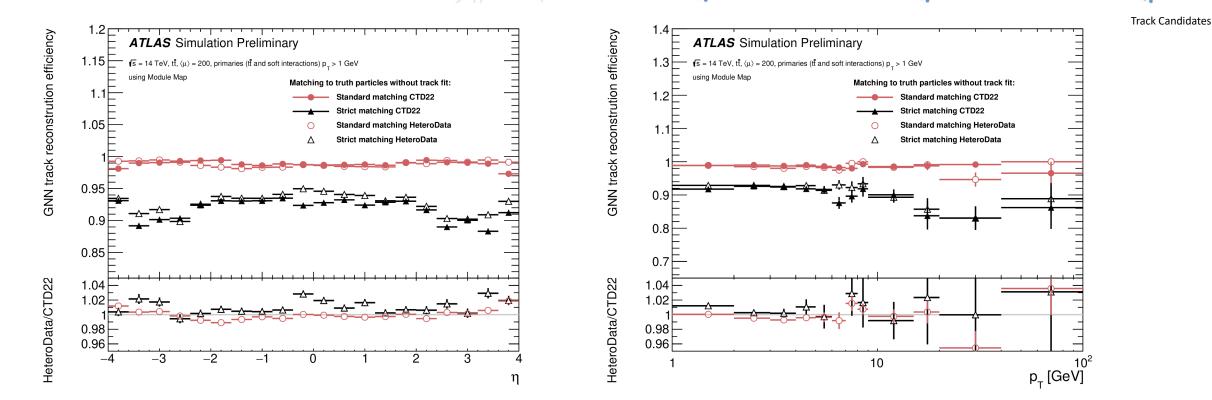
• Matching criteria

Track candidate

 $P_{\text{match}} > 0.5$

Strict Matching $P_{match} = 1$ Track purity = 1

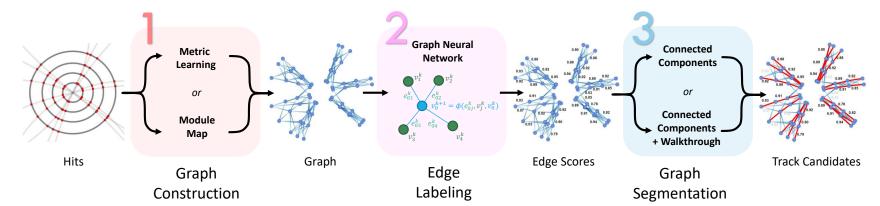
GNN track reconsident tion e



Track candidate not matched to any particle = fake track found to be $O(10^{-3})$

GNN tracking framework

Public pipeline



The pipeline is **public** <u>here</u>.

To run the pipeline, simulated sample could be obtain from ACTS using the OpenDataDetector, or using official sample from experiment.

See tutorial available <u>here</u>

► You are very much welcome to join the effort ③

Conclusion and prospects

Conclusion

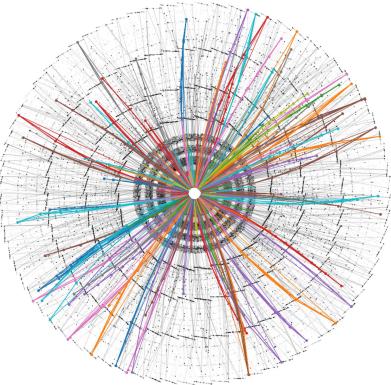
First results using a GNN-based track reconstruction with ITk simulated data are promising and realistic.

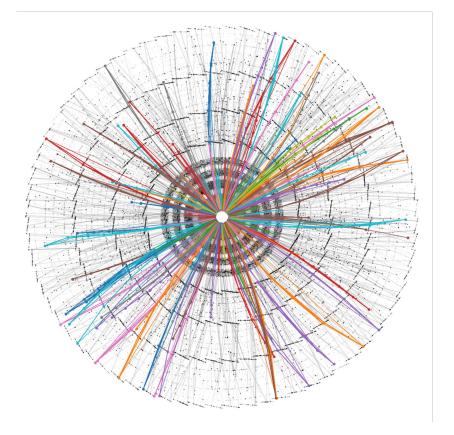
Prospects

Several studies are ongoing:

- Finish integration ACTS and Athena
- Fair comparison (timing and reconstruction performances) with Athena and ACTS Combinatorial Kalman Filter
- New track building stage, able to run on GPU
- Ongoing studies to assess the feasibility of the solution for online tracking

Thanks for your attention 😳





BACK-UP

GNN for tracking and timing

Timing consideration

- The target is to run the full pipeline in < 1 second.
- Need to be fully run on GPU.

TrackML timing (Similar graph size as for ITk)

Pipeline step	V100 GPU
Graph construction (metric learning)	~ 500 ms
Graph construction (module map)	In progress target ~ 100 ms
GNN	~170 ms
Connecting component	~100 ms
(See this <u>paper</u>)	

How to improve: GPU kernels have dedicated operation for NN. But the GNN model is much complex with its 8 message-passing operations and the way the memory is therefore handle.

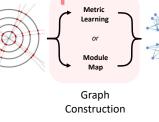
Using dedicated GNN kernels could only improve the timing, the memory consumption and the energy cost.

Graph creation: the metric learning

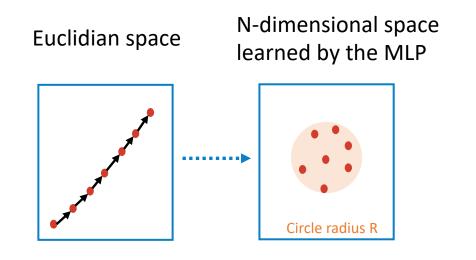
Metric Learning

Training stage

Edge creation

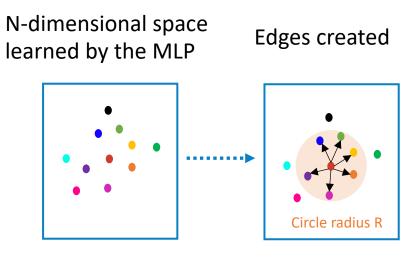


All space-points belonging to the same target particles are **learned** by a Multi-Layer Perceptron (MLP) to be embedded into a **space** where they are close.



The network is trained with a few thousand of events

Given a source node, edges between this node and all nodes within a radius R from the source are created.



No particular meaning of direction.

O(3 million) edges

additional pruning applied to reduce to O(1.3 million) edges

