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Motivation - Monte Carlo Event Generators (MCEQ)

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory
Standard Model Lagrangian
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Experiment
LHC event

Data makes you smarter

It doesn't matter how
beautiful your theory is,
it doesn't matter how
smart you are. If it
doesn't agree with
experiment, it's wrong.

Richard P. Feynman
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Motivation - Monte Carlo Event Generators (MCEQ)

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Experiment
Standard Model Lagrangian LHC event

-

e MC event generators are designed to bridge that gap
e “Virtual collider” = Direct comparison with data

U

Almost all HEP measurements and discoveries in the modern era have relied on MCEG, most
notably the discovery of the Higgs boson.

Published papers by ATLAS, CMS, LHCb: 2252
Citing at least 1 of 3 existing MCEG: 1888 (84%)
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Motivation - Monte Carlo Event Generators (MCEQ)

QCD correctly describes strong interactions in each energy range but its complex mathematical
structure makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke ™
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Why hadronization?

QCD correctly describes strong interactions in each energy range but its complex mathematical
structure makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke'\Y

Hadronization:
one of the least understood elements of MCEG
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Motivation - Hadronization

Hadronization:
-> Increased control of perturbative corrections = more often measurements are limited by

non-perturbative components, such as hadronization.

W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]

Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]
Ll .’
Pier Monl’s talk
FCC Physics Workshop 2023

» However, hadronisation remains the main bottleneck
> e.g. thrust in Higgs decays (MC variation in plot) E“
B Z
e Increase in energy insufficient for “ %
suppression (Q ~ my) 3 5
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Motivation - Hadronization

Hadronization:
-> Increased control of perturbative corrections = more often LHC measurements are

limited by non-perturbative components, such as hadronization.
- W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
- Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]
- Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]

— Pier Moni’s talk

FCC Physics Workshop 2023
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Motivation - Hadronization

Hadronization:

-> Increased control of perturbative corrections = more often LHC measurements are

limited by non-perturbative components, such as hadronization.
- W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]

Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]
Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]
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Hadronization models

Hadronization:
Early 1980's Early 2020's
(since then little development) (ot of progress in ML)
/ STRING Hadronization ] \ / CLUSTER Hadronization ] \

/f/v - Q "
S\ .

| e
| - 0

N
ML

Idea of using Machine Learning (ML) for hadronization.

Hadronization is a fitting problem
Can ML be more flexible and extract more information from data?

See also PDFs and the pioneer (NitNF DI
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What is a deep generative model?

A generator is nothing other than a function
that maps random numbers to structure.

= = = j_*m

Deep generative models: the map is a deep neural network.
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Our tool of choice: GANs

Generative Adversarial Networks (GANS):
A two-network game where one maps noise to structure
and one classifies images as fake or real.
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

o . Q=35GeV
0.8 I Q=091.2GeV ] e Colour-singlet pair end up close in phase space and
0.7 |- Q=189GeV -~ form highly excited hadronic states, the clusters
0.6 Q = 1000 GeV ]
0.5 - - e Pre-confinement states that the spectra of clusters
04 L | are independent of the hard process and energy of
03 L | the collision
0.2 | -
0.1 | -

0 |

1 10
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

2023 RHIC/AGS Annual Users' Meeting

QCD provide pre-confinement of colour

Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

ML hadronization
1st step: generate kinematics of a cluster decay:

Andrzej Siodmok 16



Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020
HadML
—» Hadrons

el

Parton =% Cluster I Discriminator
I Cluster I fiaitons
Frag
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How??

We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Generative Adversarial
«smw Network
rse

Fine Tune Training

2023 RHIC/AGS Annual Users' Meeting
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How??

We have a conditional
GAN, with cluster
4-vector input and two

hadron 4-vector outputs.

Generative Adversarial
s Network
rse

Samples

]
Conditional

Parameters

~f..+ D |

S
v

_ﬂEP{ G

Generator

Discrwmmato4

Generated
Fake
Samples

IsD
Correct?

Fine Tune Training

Noise

(&

Training data:

ris

e~ collisions at

V3 = 91.2 GeV

TO(E, By Diys D)

Cluster (E, pz, py, D=)

qTO(Ea p-'L'3 py* pl)

2023 RHIC/AGS Annual Users' Meeting

Simplification:
considering only
pions and generating
two angles in the
cluster rest frame.
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Training HADML vl

Losses
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We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Simplification:
considering only pions
and generating two
angles in the cluster rest
frame.

This is a typical
learning curve for
CAN training

Andrzej Siodmok pA
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Integration into Herwig

We extract
clusters + hadrons

N Ny |
¥ ns o
A python’ Training Event generation

Re-insert the model
back into H7

%% ONNX
RUNTIME

This then allows us to run a full event generator and produce plots
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Performance: Pions

Low-level Validation

0
(similar to training data) m
e"e” collisions at VS a° kinematic variables
Vs = 91.2 GeV
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Performance: Energy of the collisions

Low-level Validation

0 0
(beyond training data different energy) m am
e"e” collisions at VS a9 kinematic variables
Vs =192 GeV
ar© qTO
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Performance: All Hadrons

Low-level Validation

(beyond training data different hadrons

&

e~ collisions at

VS = 91.2 GeV

) hi hi
VS h kinematic variables
h2 h2

As a crude “full” model, we simply take the PIDs
from Herwig and the kinematics from the GAN.

1/eg doy /dy
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Performance: Data!

With a “full” model, we can compare directly to data!

LEP DELPHI Data
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to be any better than it at modeling the data.
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Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020
HadML
—» Hadrons

el

Parton =% Cluster I Discriminator
I Cluster I fiaitons
Frag
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Road map for today

HadML v2: Closure Test

(this paper)
—» Hadrons
Parton =% Cluster —»
Event —» Parton =% Cluster =—» —» Hadrons
Parton = Cluster =9
—» Hadrons

T,

{
11

HadML v2: Stress Test
(this paper)

Parton =% Cluster —p

Event =—» Parton =% Cluster =9

—» Hadrons

Parton = Cluster =—»

Parton = Cluster —»

Event = Parton =% Cluster =%

—» Hadrons |€—

—» Hadrons

)] 8

Discriminatot

—» Hadrons

Parton = Cluster —»

J —» Hadrons 'g—

—» Hadrons

C
| O

|

Protocol for fitting a deep generative hadronization model in a realistic data setting, where we

only have access to a set of hadrons in data.
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Training HADML v2

Losses

1.4 4

1.24

1.0+

0.8 1

0.6 -

0.4 ~

- Discriminator Loss
Generator Loss

T
&
un

T
&
IS

™~

0.7

L]
b
o

Best Wasserstein Distance

0.1

Now, the generator is
local (per cluster), but
the discriminator is
global (whole event).

Discriminator is a
permutation-invariant
architecture called
Deep Sets.

Simplification only

Pions
0 1000 2000 3000 4000 5000 6000

Epochs
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Performance

( I
0.9 : : : : :
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E in truth lab frame [GeV]

px in truth lab frame [GeV]
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Performance: going beyond inputs and outputs

3.5 - v v v
nital GAN H7 Cluster Initial GAN H7 Cluster
Final GAN '17 Cluster kin™" 3.0t Final GAN v H7 Cluster kin™"
n 107} Final GAN kin™n 3 Final GAN kin™"
5 c 2.5
: =
©
T | S 2.0}
10”? . 1 'c.
© .- @
= = 1.9t
= :
£ 1 < 1 0t
-1l 1.
'zj 10 S
0.5¢
21 - 8 . a : i
T 107 10° 006001 02 03 04 05
AR(hadron, neighbor) m’n(E!l.’m"'mv E':r"‘().“ll‘.l:')/(Ef'..ﬂ"rr.'r. + Er:r-tq"l(‘n:r)

MINIMAL AR? = A¢* + An?

A key advantage of this fitting protocol over other methods is that it can
accommodate unbinned and high-dimensional inputs.
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, HadML* v1 Generator Z HadML v2: Stress Test :
PRD 106 (2022) 096020 (this paper)

]

,

:

|

[ |

: HadML
: a

1

1

|

el

o [IT5ETd —» Hadrons
Parton = Cluster = Fraa’

—» Hadrons :

Parton = Cluster I Discriminator ,
. Event = Parton =% Cluster = & [TE 1] — Hadrons '«

=—» Hadrons ;

' Parton =% Cluster —»
Cluster —» Hadrons '

imilar setup for string model MLHad v1: 2203.04983 . 8
R T T T T e S [ ] " 1 (“
; £
5’“”"“”“”'=“"‘“=“=""“““’"""“"”"“""‘”"="=”"’=““’““":“’=“"=“’""==“““"=“‘““"““"““”””’="""’”"="”"’“’=“’”=“"‘i‘“’: .g
HadML v2: Closure Test : Generator x n ; : g
(this paper) : : [a)

Cluster —» Hadrons

=—» Hadrons
Parton = Cluster —» |2l ' Parton = Cluster = HadML

Event —» Parton =% Cluster —» —» Hadrons @ Event = Parton =% Cluster =% | *E¥|[f] —» Hadrons | ¢——

Parton =% Cluster = [ #1511 Parton = Cluster —»

|Z7-1s )| —> Hadrons pEE LU —» Hadrons

Dlscrlmlnator
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For HADML, we have made significant progress,
but there are still multiple steps to build and tune a full-fledged
hadronization model.

What is next?

e Number of technical and methodological step needed:

Directly accommodate multiple hadron species with their relative probabilities
Hyperparameter optimization, including the investigation of alternative generative models
More flexible model with a capacity to mimic the cluster or string models as well as go
beyond either model.

v b J

There is still a multi-year program ahead of us, but it will be worth it!

Early 1980's Early 2020's

STRING Hadronization CLUSTER Hadronization

HADML

L 0

™ . v—

A Y =
| V.
) ) - : 0
4 P

W .
[

So Stay tuned!
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