ML-enabled End-to-End Tracking Reconstruction and Trigger Detection

Giorgian Borca-Tasciuc

Problem Overview

Overview

- 1. Problem Overview
- 2. Pixels \mapsto Hits
- 3. Hits \mapsto Tracks
- 4. Tracks \mapsto Label
- 5. Remaining Challenges
- 6. Conclusion

Pixels → Hits

Clustering

- Clustering is done by solving a spanning forest problem
- There is an edge between pixels that are adjacent to each other
- Mean of all pixels in a cluster is taken as the hit location
- Most time-consuming portion, we are developing a sparse CNN to perform faster clustering

Pixels on Detector

Hits → Tracks

Problem Definition

- Once we have hits, we want to group hits that came from the same particle into a track
- This will be solved by treating the problem as an edge classification problem
- Out of the N² possible edges between the hits, we want to know the true edges.

Track Construction

Edge Candidate Selection

- Not all of the N² possible edges are plausible - we can eliminate a lot of edges from the get-go
- We can use some basic geometric constraints on the cylindrical coordinates of the hits
 - $\circ \qquad |\Delta \phi / \Delta r| \le \mathsf{PHI}SLOPE_MAX$
 - |z₀| <= Z_ORIGIN_MAX
 - $\circ \qquad z_0 = z_1 r \cdot (\Delta z / \Delta r)$
- The geometric constraints determine much of the latency and will play a vital role in further reducing the FPGA latency.

Edge Candidates Selection

Neural Network Architecture

- Message passing architecture.
- Initialization:

•
$$h_v^{(0)} = x_v \forall v \in V$$

- \circ x_v = (r/3, ϕ , z/3, n_{pixels in hit}, layer)
- Message Creation:

$$\circ \quad m_{u,v}^{(t)} = f_{Message}^{(t-1)} (h_u^{(t-1)}, h_v^{(t-1)})$$

• Message Aggregation:

○
$$a_v^{(t)} = (f_{Agg}(\{m_{u,v}^{(t)} : v \in N(u)\}), f_{Agg}(\{m_{v,u}^{(t)} : v \in N^{-1}(u)\}))$$

• Node Update:

$$\circ \quad \mathbf{h}_{v}^{(t)} = \mathbf{f}_{Update}(\mathbf{h}_{v}^{(t-1)}, \mathbf{a}_{v}^{(t)})$$

Message Network Details (This slide is very busy)

•
$$m_{u,v}^{(t)} = f_{Message}(h_{u}^{(t-1)}, h_{v}^{(t-1)})$$

 $a_{v}^{(t)} = (f_{Agg}(\{m_{u,v}^{(t)} : v \in N(u)\}),$
 $f_{Agg}(\{m_{v,u}^{(t)} : v \in N^{-1}(u)\}))$
• $f_{Edge} : (\mathbb{R}^{f} \times \mathbb{R}^{f}) \mapsto [0, 1]$
 $f_{Edge} (h_{u}, h_{v}) = MLP(h_{u}, h_{v})$
• $f_{Message}(h_{u}, h_{v}) = f_{Edge}(h_{u}, h_{v}) \cdot h_{u}$
• $f_{Agg}(M) = \Sigma_{m} m$

Node Network Details

Track Construction

- Once edge classification is performed, a track is constructed by finding the connected components
- Track is constructed by finding the mean of the hits on each layer

Performance

Metric	Year	Value	
Accuracy	2023	92.07%	
Precision	2023	92.54%	
Recall	2023	97.97%	
F1	⁵ 1 2023		
Accuracy	2022	96.30%	
Precision	2022	84.55%	
Recall	2022	83.25%	
F1	2022	83.89%	

Tracks → Label

Problem Definition

- After creating the tracks, we have a set of tracks
- We want to know whether the event that created these tracks was a trigger event
- A *trigger event* is an event in which we had a D₀→(π⁺, K⁻) or D₀→(π⁻, K⁺) decay

What needs to be modeled?

- $D_0 \mapsto (\pi^+, K^-) \text{ or } D_0 \mapsto (\pi^-, K^+)$
- Considering the problem from a high level perspective, we need to consider:
 - Track-to-track Interactions: Do these pair of tracks form a (π^+ , K⁻) or (π^+ , K⁻) pair?
 - Track-to-global Interactions: Where is the origin of this track?
 - Global-to-Track Interactions: Incorporate information about the origin of this track into the track embeddings

Architecture

- Previous considerations motivate the following block.
 - Set Encoder: Track-to-Track interactions
 - Bipartite Aggregation: Track-to-Global and Global-to-Track interactions

Set Encoder

- Create Query, Key, Value embeddings from track embeddings using an MLP
- Find attention between every track i and track j by calculating Q_i · K_j and using the softmax to normalize the sum of attention scores to 1
- Weigh value embeddings by the attention score and aggregate to create new track embeddings

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

SAB(X) = LayerNorm(H + rFF(H)), where H = LayerNorm(X + Multihead(X, X, X))

Bipartite Aggregators

- Use an MLP: R^f→Rⁿ, followed by a softmax to determine how much each track contributes to each aggregator
 - f is size of track embedding
 - n is number of aggregators
- For each aggregator:
 - Scale each track by its contribution score to that aggregator
 - Perform max and mean pooling over scaled tracks to calculate aggregator embedding
- Concatenate aggregators to track embeddings, and use an MLP to update track embeddings

Architecture

- Stack multiple SEBA Blocks
- Use Bipartite Aggregation with single aggregator to generate event embedding
- MLP on event embedding to predict Trigger Event

Track Features

- Track given to trigger classifier has the following features:
 - \circ (x, y, z) location of hit on each layer
 - Length segment between each layer
 - Angle formed by segments
 - Estimated radius of circle fit to hits
 - Estimated center of circle fit to hits
 - Estimated transverse momentum of track
- Estimated radius and center provided ~10pp increase in performance

Multi-Task Learning to Improve model performance

- Several modifications to standard training process in order to improve the performance and robustness of our trigger algorithm
 - Track embeddings used predict whether two tracks come from the same parent
 - We perturb hits off the detector layers while keeping it on the particle path

•
$$\mathscr{L} = L_{CE}(trigger_{pred}, trigger_{true}) + L_{CE}(A_{pred}, A_{true})$$

Performance

Data	Year	Metric	Result
GT Tracks	2023	Accuracy	90.22%
GT Tracks	2023	Precision	86.35%
GT Tracks	2023	Recall	95.41%
Predicted Tracks	2022	Accuracy	84.01%
GT Tracks	2022	Accuracy	87.5%

Remaining Challenges

- Modifying algorithms to deal with pile-up
- Work on simplifying algorithms and reducing data quantity to meet latency challenges
 - Initial study of latency-accuracy tradeoff showed we could reduce edge quantity at the tracking stage by 60% with minimal loss in final trigger accuracy
- Ensure trigger algorithm works in explainable and robust way
 - Initial study has shown model prefers to drop non-trigger tracks without affecting event label and prefers to perturb hits as to not affect the track radius

	$d\phi_{max}$	dz_{max}	accuracy	Maximum Edge Candidates
0	0.025005	102.000000	0.885895	1030.0
1	0.014881	16.000000	0.885360	548.0
2	0.011599	155.000000	0.884555	638.0
3	0.026555	113.000000	0.884320	1077.0
4	0.024582	178.000000	0.883860	1022.0
5	0.010320	48.000000	0.882630	556.0
6	0.012193	14.220353	0.881850	463.0
7	0.030000	200.000000	NaN	1171.0

Conclusion

- ML models have shown steady increases in performance on the triggering problem
- Incorporating physics knowledge been responsible for large gains in performance in trigger prediction
- Challenges remain in adapting the ML algorithm to the real-world latency and data availability constraints