
ML-enabled End-to-End 
Tracking Reconstruction and 

Trigger Detection
Giorgian Borca-Tasciuc



Problem Overview 



Overview

1. Problem Overview
2. Pixels ↦ Hits
3. Hits ↦ Tracks
4. Tracks ↦ Label
5. Remaining Challenges
6. Conclusion



Pixels ↦ Hits



Clustering

● Clustering is done by solving a 
spanning forest problem

● There is an edge between pixels 
that are adjacent to each other

● Mean of all pixels in a cluster is 
taken as the hit location

● Most time-consuming portion, 
we are developing a sparse 
CNN to perform faster clustering



Hits ↦ Tracks



Problem Definition

● Once we have hits, we want 
to group hits that came from 
the same particle into a track

● This will be solved by treating 
the problem as an edge 
classification problem

● Out of the N2 possible edges 
between the hits, we want to 
know the true edges.



Edge Candidate Selection

● Not all of the N2 possible edges are 
plausible - we can eliminate a lot of edges 
from the get-go

● We can use some basic geometric 
constraints on the cylindrical coordinates of 
the hits

○ |Δφ/Δr| <= PHI_SLOPE_MAX
○ |z0| <= Z_ORIGIN_MAX
○ z0 = z1 - r·(Δz/Δr)

● The geometric constraints determine much 
of the latency and will play a vital role in 
further reducing the FPGA latency.



Neural Network Architecture  

● Message passing architecture.
● Initialization:

○ hv
(0) = xv  ∀v ∈ V

○ xv = (r/3, φ, z/3, npixels in hit, layer)
● Message Creation:

○ mu,v
(t) = fMessage(hu

(t-1), hv
(t-1))

● Message Aggregation:
○ av

(t) = (fAgg({mu,v
(t) : v ∈ N(u)}), fAgg({mv,u

(t) : v ∈ N-1(u)}))
● Node Update:

○ hv
(t) = fUpdate(hv

(t-1), av
(t))



Message Network Details (This slide is very busy)

● mu,v
(t) = fMessage(hu

(t-1), hv
(t-1))

av
(t) = (fAgg({mu,v

(t) : v ∈ N(u)}), 

  fAgg({mv,u
(t) : v ∈ N-1(u)}))

● fEdge : (ℝ
f×ℝf) ↦[0, 1]

fEdge (hu, hv) = MLP(hu, hv)

● fMessage :  (ℝ
f×ℝf) ↦  ℝ2f

fMessage(hu, hv) = fEdge(hu, hv)·hu

● fAgg (M) = Σm m



Node Network Details

● hv
(t) = fUpdate(hv

(t-1), av
(t))

● fUpdate : (ℝ
f×ℝ2f) ↦ℝf

fUpdate(hu, au) = MLP(hu, au) + hu



Track Construction

● Once edge classification is performed, a track is constructed by finding the 
connected components

● Track is constructed by finding the mean of the hits on each layer



Performance

Metric Year Value

Accuracy 2023 92.07%

Precision 2023 92.54%

Recall 2023 97.97%

F1 2023 95.18%

Accuracy 2022 96.30%

Precision 2022 84.55%

Recall 2022 83.25%

F1 2022 83.89%



Tracks ↦ Label



Problem Definition

● After creating the tracks, we have a 
set of tracks

● We want to know whether the event 
that created these tracks was a 
trigger event

● A trigger event is an event in which 
we had a D0↦(π+, Κ-) or D0↦(π-, Κ+) 
decay



What needs to be modeled?

●  D0↦(π+, Κ-) or D0↦(π-, Κ+)
● Considering the problem from a high level perspective, we need to consider: 

○ Track-to-track Interactions: Do these pair of tracks form a (π+, Κ-) or (π+, Κ-) pair?
○ Track-to-global Interactions: Where is the origin of this track?
○ Global-to-Track Interactions: Incorporate information about the origin of this track into the track 

embeddings



Architecture

● Previous considerations motivate the following block.
○ Set Encoder: Track-to-Track interactions
○ Bipartite Aggregation: Track-to-Global and Global-to-Track interactions



Set Encoder

● Create Query, Key, Value 
embeddings from track embeddings 
using an MLP

● Find attention between every track i 
and track j by calculating Qi⋅Kj and 
using the softmax to normalize the 
sum of attention scores to 1

● Weigh value embeddings by the 
attention score and aggregate to 
create new track embeddings



Bipartite Aggregators

● Use an MLP: ℝf↦ℝn, followed by a softmax 
to determine how much each track 
contributes to each aggregator

○ f is size of track embedding
○ n is number of aggregators

● For each aggregator:
○ Scale each track by its contribution score to that 

aggregator
○ Perform max and mean pooling over scaled 

tracks to calculate aggregator embedding
● Concatenate aggregators to track 

embeddings, and use an MLP to update 
track embeddings



Architecture

● Stack multiple SEBA Blocks
● Use Bipartite Aggregation with single aggregator to generate event 

embedding
● MLP on event embedding to predict Trigger Event



Track Features

● Track given to trigger classifier has the following features:
○ (x, y, z) location of hit on each layer
○ Length segment between each layer
○ Angle formed by segments
○ Estimated radius of circle fit to hits
○ Estimated center of circle fit to hits
○ Estimated transverse momentum of track

● Estimated radius and center provided ~10pp increase in performance



Multi-Task Learning to Improve model performance

● Several modifications to standard training 
process in order to improve the performance 
and robustness of our trigger algorithm

○ Track embeddings used predict whether two tracks 
come from the same parent

○ We perturb hits off the detector layers while keeping it 
on the particle path

● ℒ = LCE(triggerpred, triggertrue) + LCE(Apred, Atrue)



Performance

Data Year Metric Result

GT Tracks 2023 Accuracy 90.22%

GT Tracks 2023 Precision 86.35%

GT Tracks 2023 Recall 95.41%

Predicted Tracks 2022 Accuracy 84.01%

GT Tracks 2022 Accuracy 87.5%



Remaining Challenges

● Modifying algorithms to deal with 
pile-up

● Work on simplifying algorithms and 
reducing data quantity to meet 
latency challenges

○ Initial study of latency-accuracy tradeoff 
showed we could reduce edge quantity at 
the tracking stage by 60% with minimal 
loss in final trigger accuracy

● Ensure trigger algorithm works in 
explainable and robust way

○ Initial study has shown model prefers to 
drop non-trigger tracks without affecting 
event label and prefers to perturb hits as 
to not affect the track radius 



Conclusion

● ML models have shown steady increases in performance on the triggering 
problem

● Incorporating physics knowledge been responsible for large gains in 
performance in trigger prediction

● Challenges remain in adapting the ML algorithm to the real-world latency and 
data availability constraints


