2023 RHIC/AGS ANNUAL USERS' MEETING

CELEBRATING NEW BEGINNINGS AT RHIC and EIC

August 1-4, 2023

Recent heavy-flavor measurements from STAR

Veronika Prozorova (for the STAR Collaboration)

Czech Technical University in Prague

RHIC & AGS Annual Users' Meeting August 1-4, 2023

Office of Science

Outlook

- STAR detector
- Why heavy quarks?
- Heavy-flavor electrons
- Recent results:

Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV arXiv:2303.03546 Accepted by PLB

> Inclusive e^{\pm} from open HF hadron decays in p+p @ 200 GeV Phys. Rev. D 105, 032007

 $> e^{\pm}$ from open HF hadron decays in Au+Au @ 200 GeV JHEPO6(2023)176

Mass ordering of *c* and *b* quark energy loss Eur. Phys. J. C 82, 1150 (2022)

- Quarkonia
- Recent results:

> CNM effects for inclusive J/ ψ in p+Au @ 200 GeV Phys. Lett. B 825 (2022) 136865

 $ightarrow \Upsilon$ production in isobar collisions @ 200 GeV star Preliminary

 J/ψ elliptic flow in isobar collisions @ 200 GeV star Preliminary

Summary and future plans

The Solenoidal Tracker At RHIC (STAR)

- TPC tracking and PID (dE/dx, p)
- **BEMC** high p_T electron identification and triggering

• TOF – PID (1/beta)

- BBC & VPD minimum bias trigger
- MTD muon identification and triggering
- **HFT** topological reconstruction of heavyflavor hadrons

Heavy quarks (c and b) = probes of QGP

- Production cross-sections can be calculated in pQCD
- Participate in the whole medium evolution

Ideal probes of QGP

Heavy-flavor electrons (HFE)

- Electrons from semi-leptonic decays of heavy-flavor hadrons
- A mixture of electrons from both **D** and **B** hadron decays
- HFE BR > hadronic decays of open HF hadrons BR

Widely used to study heavy quark (HQ) production

Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV

Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV

e^{HF} (HFE) – heavy-flavor electrons

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} \nu_n \cos[n(\varphi - \psi_n)]$$

• 54.4 GeV : significant v_2 of e^{HF}

27 GeV : v_2 is consistent with 0

Consistency of NCQ with $e^{HF}v_2$

$$\mathbf{v}_{2}^{\text{non-flow}} = \frac{\langle \sum_{i} \cos 2(\varphi_{e} - \varphi_{i}) \rangle}{M \langle \nu_{2} \rangle}$$

- Strong interaction of *c* quark with QGP
 - c quarks gain most collectivity at $T \approx T_c$ Phys. Rev. Lett. 118 (2017) 212301 Phys. Rev. C 91 (2015) 024904
- Deviation of *c* quarks from local thermal equilibrium ?
 - **c** hadrons obtain significant v_2
 - Hints of close to thermal equilibrium with the medium at 54.4 GeV

Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV

<u>STAR: arXiv:2303.03546</u> STAR: Phys. Rev. C 88 (2013) 014902 STAR: Phys. Rev. Lett. 92 (2004) 052302 STAR: Phys. Rev. C 103 (2021) 064907 ALICE: JHEP 06 (2015) 190 ALICE: Phys. Rev. C 88 (2013) 044910

Indication of v_2 of heavier particles drops faster with decreasing collision energy

The influence of QGP medium on final-state particle dynamics is reduced as the collision energies decrease

Inclusive e^{\pm} from open HF hadron decays in p+p @ 200 GeV

Inclusive e^{\pm} from open HF hadron decays in p+p @ 200 GeV

[•] $E \frac{\mathrm{d}^3 \sigma}{\mathrm{d}p^3} (\mathrm{HFE}) = \frac{1}{2} \frac{1}{L} \frac{N_{NPE}}{2\pi p_T \Delta p_T \Delta y} - E \frac{\mathrm{d}^3 \sigma}{\mathrm{d}p^3} (HDE)$

Consistency with the upper limit of the FONLL uncertainty

- Further constraints on theoretical calculations
- Precise reference for R_{AA} measurements for HDE

HDE = ρ , ω , ϕ + J/ ψ , Y + Drell-Yan + K_{e3}

e^{\pm} from open HF hadron decays in Au+Au @ 200 GeV

• Suppression by factor of 2 in central collisions within $3.5 < p_{\rm T} < 8$ GeV/c

Significant energy loss of HQ in QGP

- New results vs PHENIX: precision improvement for $p_{\rm T}$ > 6 GeV/c
- New results vs STAR: reduction of uncertainties & measurement extension beyond central collisions
- New results vs models: agreement with data within uncertainties

e^{\pm} from open HF hadron decays in Au+Au @ 200 GeV

• A hint of HFE R_{AA} decreasing from peripheral to central collisions

Stronger parton energy loss in central collisions

• Consistency with PHENIX results

• Qualitative description of data by Duke and PHSD models

Mass ordering of c and b quark energy loss

08/02/2023

Mass ordering of c and b quark energy loss

$$R_{AA}^{b \to e} = f_b^{AA} / f_b^{pp} \times R_{AA}^{incl}$$
$$R_{AA}^{c \to e} = (1 - f_b^{AA}) / (1 - f_b^{pp}) \times R_{AA}^{incl}$$

- $R_{AA}^{b \rightarrow e} > R_{AA}^{c \rightarrow e}$ Evidence of mass ordering!
- Significant deviation of both R_{CP} from unity
- Good agreement with both Duke and PHSD models

Why quarkonia?

- Observation of quarkonium suppression in HIC = strong evidence for QGP formation, important probes of the medium T
- Hot nuclear matter effects:
 - Dissociation due to color screening and regeneration
- Sequential quarkonium suppression due to different binding energies (quarkonium state size > $\lambda_D \sim 1/T_C$)

- Cold Nuclear Matter (CNM) effects:
 - Modification of PDFs, nuclear absorption, coherent energy loss, co-mover absorption, ... study in p+A collisions
- Production mechanism study in p+p collisions

CNM effects for inclusive J/ψ in p+Au @ 200 GeV

- Suppression of ~ 30 % below 2 GeV/c
- Consistency with 1 above 3 GeV/*c*
- Better precision than for R_{dAu}

Little CNM effects on J/ψ production

Similar CNM effects as for *d*+Au

- Consistency with the model calculations within uncertainties
- The Comover model: underprediction of the data above 3.5 GeV/c by 2.3σ
- Au+Au: large suppression of J/ψ yield above 3 GeV/c due to hot medium effects
- First measurement within 0 < $p_{\rm T}$ < 10 GeV/c

Y production in isobar collisions @ 200 GeV

- No significant $p_{\rm T}$ dependence
- No significant species dependence at the same <N_{part}>
- Suppression driven by collision energy density
- Different levels of suppression of ٠ quarkonium states of different sizes

 J/ψ

Y(3S) Y(2S)

Xc

 $\lambda_{\rm D}$

٠

STAR: Phys. Rept. 858 (2020) 1-117

Y(1S)

J/ψ elliptic flow in isobar collisions @ 200 GeV

Why J/ ψ v_2 ?

Distinguish J/ψ from pQCD process or recombination

- $J/\psi v_2$ is consistent with 0 and with Au+Au results
- Uncertainty is dominated by statistical error
- Indication of small regeneration effects

Summary

Open Heavy-flavor

- Elliptic flow:
 - ➢ 54.4 GeV : significant v_2 of e^{HF}
 - ▶ 27 GeV : v_2 is consistent with 0
- HFE in p+p:
 - > Precision improvement at $p_{\rm T}$ > 6 GeV/c
 - Further constrains on theoretical calculations
 - > Precise reference for R_{AA} measurements
- HFE in Au+Au:
 - Significant energy loss of HQ in QGP
 - > Improvement of precision for $p_{\rm T}$ > 6 GeV/c
 - Mass ordering of c and b quark energy loss

Quarkonium

- CNM effects for inclusive J/ψ :
 - ▶ First measurement within $0 < p_T < 10 \text{ GeV}/c$
 - > Little CNM effects on J/ψ production above 3 GeV/c
- Y production in isobar collisions:
 - \succ Suppression of Υ states comparable to Au+Au
 - \blacktriangleright No significant $p_{\rm T}$ and species dependence
- J/ ψ elliptic flow in isobar collisions:

 \succ J/ ψ v_2 consistent with 0

STAR Heavy Flavor program for Runs 23-25

- Run 23 + 25 Au+Au at 200 GeV: 20B MB and 40nb⁻¹ HT events projected
- Detector upgrades (EPD, iTPC..)

- E.g. precise $J/\psi v_2$ measurement at RHIC energies
- EPD for event plane reconstruction → less non-flow effect contribution

• Run 24 p+Au: higher statistics than in Run 15

• Potential enhancement at high p_T for the STAR results

Azimuthal anisotropy v₂

BACKUP

HFE analysis steps

- 1. Identification and purity correction of inclusive electrons (INCL)
- 2. Identification and efficiency correction of photonic electrons (PE)
- 3. Subtraction of PE from INCL sample
- 4. Efficiency correction of non-photonic electrons (NPE)
- 5. Subtraction of remaining background sources, hadron-decayed electrons (HDE), including dielectron decays of light-vector mesons (ρ , ω , ϕ), quarkonium decays (J/ψ , Υ), Drell-Yan processes and kaon semi-leptonic decays (K_{e3})

