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FIG. 1. Cross sections for (a) inclusive and (c) isolated direct photons as a function of pT compared with next-to-leading-order
(NLO) pQCD calculations [27, 28] for di↵erent renormalization and factorization scales µ = pT /2 (dashed line), pT (solid line),
2pT (dotted line). The vertical bars show statistical uncertainties and square brackets are for systematic uncertainties. Not
shown are 10% absolute luminosity uncertainties. Panels (b) and (d) show comparisons of data and calculations.

where ✏ includes corrections for the detector acceptance,
photon reconstruction e�ciency, trigger e�ciency, and
detector smearing e↵ects and rpileup is the correction for
the pileup e↵ects due to the large signal-integration time
of the EMCal coupled with the high collision rate. It
is approximately 0.8 (0.9) for inclusive (isolated) direct
photons. The correction is obtained by a logarithmic
extrapolation of the number of photons per event to zero
event rate. The L is the integrated luminosity used for
the analyzed data, and �y is the rapidity range.

The main systematic uncertainty sources are from the
global energy scale of tuning the ⇡0 mass-peak position
and energy nonlinearity of the EMCal response at high
pT . These are calculated by a single ⇡0 or photon gen-
erator with a fast detector simulation and depending on
pT were determined to be 14%–19% (7%–13%) for the
inclusive (isolated) direct-photon cross section. The sys-
tematic uncertainties due to ⇡0 yield extraction and rela-
tive fractions of other hadron decays over ⇡0 are 2%–12%
(0.5%–2.5%) and 5%–14% (0.4%–6.0%) for the inclusive
(isolated) direct-photon cross section. These contribu-
tions for the isolated direct-photon cross section are rel-
atively small compared to the inclusive case as the isola-

tion requirement largely reduces these backgrounds. The
loss of photons from conversions in the material before
the EMCal is estimated using a single-photon generator
plus full geant detector simulation [29]. The material of
the vertex tracker [30] leads to a (12.8 ± 1.9)% probabil-
ity for a photon to convert. This systematic uncertainty
only contributes to the west arm, because in 2013 the east
arm did not have a vertex-tracker installed. Conversions
in other materials lead to photon losses of (3±1)% in the
PbSc and (4.5±1.3)% in the PbGl. When calculating
the direct-photon yield in Eq. (1) and Eq. (2), we vary
the photon-conversion rate by its systematic uncertainty
to get 1%–8% relative uncertainties of the direct-photon
yield. The uncertainties from the EMCal detector reso-
lution of 2%–8% and trigger of 2%–4.5% are also taken
into account. Other uncertainties, including geometrical
acceptance, trigger e�ciencies, and pileup e↵ect, are in
total less than 7%.

Figure 1(a) shows the measured inclusive direct-
photon cross section at midrapidity in ~p + ~p collisions
at

p
s = 510 GeV compared with NLO pQCD calcula-

tions [27, 28] using NNPDF3.0 parton-distribution func-
tions (PDF) [31, 32] and Glück-Reya-Vogt (GRV) frag-

Phys. Rev. Lett. 130, 251901 (2023)
https://arxiv.org/abs/2202.08158ve 

• Agreement with 
NLOpQCD 
@ pT ≳ 12 GeV/c
• Consistent with 

prior results
(PRD 86, 072008: Fig 
10)

• Underestimates 
@ pT ≲ 12 GeV/c
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FIG. 2. Double-helicity asymmetry ALL vs pT for isolated
direct-photon production in polarized p+p collisions at

p
s =

510 GeV at midrapidity. Vertical error bars (boxes) represent
the statistical (systematic) uncertainties. The systematic un-
certainties for pT < 10 GeV/c are smaller than the marker
size. Not shown are a 3.9⇥10�4 shift uncertainty from relative
luminosity and a 6.6% scale uncertainty from polarization.
The DSSV14 and JAM22 calculations are shown with 1� un-
certainty bands obtained from MC replicas [11, 15, 16, 40, 41].
JAM22 calculations are based on PDF sets from the global
analysis of the JAM Collaboration [16], and the code to cal-
culate the asymmetries was provided by W. Vogelsang.
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Atomique, and Institut National de Physique Nucléaire
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ALL (double helicity asymmetry) for direct 
photons isolates the gluon contribution 
because q + g → q + γ dominates at RHIC at 
pT > 5 GeV/c

PHENIX data follows the 
Δg > 0 polarized gluon PDF
• Gluon spins aligned with proton spin

acceptance, trigger efficiencies, and pileup effect, are in
total less than 7%.
Figure 1(a) shows the measured inclusive direct-photon

cross section at midrapidity in p⃗þ p⃗ collisions at
ffiffiffi
s

p
¼

510 GeV compared with NLO pQCD calculations [29,30]
using NNPDF3.0 parton-distribution functions (PDF)
[31,32] and Glück-Reya-Vogt (GRV) fragmentation
functions (FF) [33]. The pseudorapidity range for this
measurement is jηj < 0.25 after the fiducial requirement
that removes edge towers of the EMCal. The calculation is
in good agreement with the data within the uncertainties for
pT > 12 GeV=c, but underestimates the yield by up to a
factor of ≈3 for pT < 12 GeV=c. This discrepancy is
possibly due to multiparton interactions and parton showers
[34–38]. The isolated direct-photon cross section is shown
in Fig. 1(c) as a function of pT and compared with the NLO
pQCD calculation [29,30] using NNPDF3.0 [31,32] and
GRV FF [33]. The calculation is in good agreement with
the data within the uncertainties, with slight overestimation
in the lowest pT bins.
The double-helicity asymmetry is defined as

ALL ¼ Δσ
σ

¼ σþþ − σþ−
σþþ þ σþ−

; ð4Þ

where σþþ (σþ−) is the cross section for the same
(opposite) helicity proton-proton collisions. This can be
rewritten in terms of particle yield and beam polarizations:

ALL ¼ 1

PBPY

Nþþ − RNþ−
Nþþ þ RNþ−

; ð5Þ

where Nþþ (Nþ−) is the number of isolated direct photons
from the collisions with the same (opposite) helicities.
PB (PY) are the polarizations for the blue (yellow) proton
beams, and the average values in 2013 were 0.55 (0.57)
[39]. R ¼ ðLþþ=Lþ−Þ is the relative luminosity that is
measured by the BBC. The systematic contribution of R to
ALL was found to be 3.8 × 10−4 [13].
The asymmetry was calculated for photon candidates

that passed the same time-of-flight, minimum-energy, and
isolation requirements as in the cross-section analysis.
A z-vertex requirement of 30 cm is used for the asymmetry
measurement. The asymmetry contribution for back-
ground photons from π0 ’s decay was calculated from
the sideband regions (47–97 and 177–227 MeV=c2) below
and above the π0 mass peak (112–162 MeV=c2) using the
inclusive photon sample due to the limited statistics in
the isolated photon sample. The asymmetry for other
hadron decays (mostly η decays) was taken as Aη

LL from
previous PHENIX measurements at

ffiffiffi
s

p
¼ 200 GeV [6]

by assuming xT scaling. The difference in Aη
LL between

200 and 510 GeV for a given xT is expected to be
much smaller than the experimental uncertainty of the
200 GeV result which was used to assign a systematic

uncertainty [11,12]. The background-corrected asymmetry
can be calculated as

Adir
LL ¼ Atotal

LL − rπ0Aπ0
LL − rhA

η
LL

1 − rπ0 − rh
; ð6Þ

where rπ0 (10%–14%) and rh (0.6%–1.4%) are background
fractions of π0 and other hadron-decay photons, respec-
tively. We used a bunch-shuffling technique which assigned
a random spin polarization to each bunch and examined the
distribution of resulting asymmetries ensure there were
no false asymmetries arising from unknown systematic
effects [6]. The data were divided into subgroups according
to the bunch spin patterns that were used to fill the RHIC
rings, and calculated asymmetries were found to be
consistent.
Figure 2 shows the double-helicity asymmetry of iso-

lated direct-photon production in longitudinally polarized
proton-proton collisions at

ffiffiffi
s

p
¼ 510 GeV for 6 < pT <

20 GeV=c. The corresponding gluon momentum fraction is
x ≈ 2pT=

ffiffiffi
s

p
. In the asymmetry measurement, systematic

effects are largely canceled. The systematic uncertainties
in Fig. 2 include point-to-point uncertainties from back-
ground estimation and false asymmetries in the background
due to pileup effects at low pT. The NLO pQCD calculation
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FIG. 2. Double-helicity asymmetry ALL vs pT for isolated
direct-photon production in polarized pþ p collisions at

ffiffiffi
s

p
¼

510 GeV at midrapidity. Vertical error bars (boxes) represent the
statistical (systematic) uncertainties. The systematic uncertainties
for pT < 10 GeV=c are smaller than the marker size. Not shown
are a 3.9 × 10−4 shift uncertainty from relative luminosity and
a 6.6% scale uncertainty from polarization. The DSSV14 and
JAM22 calculations are shown with 1σ uncertainty bands
obtained fromMC replicas [11,15,16,40,41]. JAM22 calculations
are based on PDF sets from the global analysis of the JAM
Collaboration [16], and the code to calculate the asymmetries was
provided by W. Vogelsang.
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• Purpose: Demonstrate 
alternative way to 
calculate Ncoll
• Glauber model 

(forward rapidity)
• Measured direct 

photons (midrapidity)
• Motivation
• For small systems, a 

high-pT particle at 
mid-rapidity is not 
available to hit forward 
detectors
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FIG. 1. The pT distribution at high pT of (a) neutral pi-

ons and (b) direct photons for di↵erent d+Au event activ-

ity classes compared to those from p+p collisions. Panel (c)

shows the ratio �dir/⇡0
. For better visibility some points are

slightly shifted in pT .

Invariant yields of ⇡0 and �dir covering the pT range
from 7.5 to 18 GeV/c are shown in Fig. 1, (a) and (b),
respectively. Both panels include the yield for d+Au (0%-
100%) and for six d+Au event classes selected by event
activity, with 0%–5% being the events with the largest
activity. Invariant yields measured in p+p [21, 57] are
also shown. The d+Au results for ⇡0 and for MB �dir

are consistent with previous measurements [21, 58]. Fig-
ure 1 (c) presents the �dir/⇡0 ratios. The �dir/⇡0 ratio for
d+Au (0%-100%) is consistent with that from p+p col-
lisions. This is also true for all d+Au event classes with
low to moderate event activity. The similarity of �dir/⇡0

for p+p and most d+Au collisions suggests that initial
state CNM e↵ects must be similar for the production of
high pT ⇡0 and �dir. This supports the conjecture that

the earlier observed enhancement of R⇡0

xA in x+A colli-
sions with low event activity [21] was caused by a bias
in the mapping of event activity to NGL

coll. In contrast,
the �dir/⇡0 ratio for the d+Au events with high activity
(0%–5%) is visibly larger than that for p+p. This hints
at the presence of final-state e↵ects in these events.
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FIG. 2. Values of NEXP
coll verses pT as defined in Eq. 2 for

three event d+Au classes, (a) 0%–100%, (b) 0%–5% and (c)

60%–88%. Also shown are fits to the data (solid lines) and the

corresponding valued NGL
coll (dashed lines). Panels (d) to (f)

show the nuclear-modification factors R⇡0

dAu,EXP, calculated

with Eq. 3, for the same event selections in (d) to (f) together

with fits to the data.

To further quantify the bias in mapping event activity
to NGL

coll, N
GL
coll and NEXP

coll are compared directly for the
di↵erent event classes. Figure 2, shows NEXP

coll verses pT
for (a) MB d+Au events (0%-100%), (b) high (0%–5%)
and (c) low (60%–88%) event activity. Included are the
average values of NEXP

coll determined from fits to the data
(solid lines) compared to NGL

coll (dashed lines) [55]. The
systematic uncertainties on NEXP

coll , ⇡16%, are dominated
by uncertainties on the p+p data set and thus are a com-
mon scale uncertainty for all d+Au event classes. The
NEXP

coll and NGL
coll agree well for 0%-100%, and are consis-

tent for all event selections within uncertainties. How-
ever, the di↵erence of NEXP

coll and NGL
coll has a clear trend

with event activity. The deviation is largest for events
with low activity, where NGL

coll is smaller than NEXP
coll .

Moving to event classes with higher event activity the
di↵erence decreases and eventually inverts for the events
with the highest activity.

The significance of this trend can be evaluated by cal-
culating the double ratio, NEXP

coll (i)/NEXP
coll (0%–100%) to

NGL
coll(i)/N

GL
coll(0%–100%) for the event selection i. In this

double ratio, the systematic uncertainties cancel. The
double ratio for 0%–5% and 60%–88% is 0.96± 0.05 and
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ons and (b) direct photons for di↵erent d+Au event activ-

ity classes compared to those from p+p collisions. Panel (c)

shows the ratio �dir/⇡0
. For better visibility some points are

slightly shifted in pT .

Invariant yields of ⇡0 and �dir covering the pT range
from 7.5 to 18 GeV/c are shown in Fig. 1, (a) and (b),
respectively. Both panels include the yield for d+Au (0%-
100%) and for six d+Au event classes selected by event
activity, with 0%–5% being the events with the largest
activity. Invariant yields measured in p+p [21, 57] are
also shown. The d+Au results for ⇡0 and for MB �dir

are consistent with previous measurements [21, 58]. Fig-
ure 1 (c) presents the �dir/⇡0 ratios. The �dir/⇡0 ratio for
d+Au (0%-100%) is consistent with that from p+p col-
lisions. This is also true for all d+Au event classes with
low to moderate event activity. The similarity of �dir/⇡0

for p+p and most d+Au collisions suggests that initial
state CNM e↵ects must be similar for the production of
high pT ⇡0 and �dir. This supports the conjecture that

the earlier observed enhancement of R⇡0

xA in x+A colli-
sions with low event activity [21] was caused by a bias
in the mapping of event activity to NGL

coll. In contrast,
the �dir/⇡0 ratio for the d+Au events with high activity
(0%–5%) is visibly larger than that for p+p. This hints
at the presence of final-state e↵ects in these events.
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FIG. 2. Values of NEXP
coll verses pT as defined in Eq. 2 for

three event d+Au classes, (a) 0%–100%, (b) 0%–5% and (c)

60%–88%. Also shown are fits to the data (solid lines) and the

corresponding valued NGL
coll (dashed lines). Panels (d) to (f)

show the nuclear-modification factors R⇡0

dAu,EXP, calculated

with Eq. 3, for the same event selections in (d) to (f) together

with fits to the data.

To further quantify the bias in mapping event activity
to NGL

coll, N
GL
coll and NEXP

coll are compared directly for the
di↵erent event classes. Figure 2, shows NEXP

coll verses pT
for (a) MB d+Au events (0%-100%), (b) high (0%–5%)
and (c) low (60%–88%) event activity. Included are the
average values of NEXP

coll determined from fits to the data
(solid lines) compared to NGL

coll (dashed lines) [55]. The
systematic uncertainties on NEXP

coll , ⇡16%, are dominated
by uncertainties on the p+p data set and thus are a com-
mon scale uncertainty for all d+Au event classes. The
NEXP

coll and NGL
coll agree well for 0%-100%, and are consis-

tent for all event selections within uncertainties. How-
ever, the di↵erence of NEXP

coll and NGL
coll has a clear trend

with event activity. The deviation is largest for events
with low activity, where NGL

coll is smaller than NEXP
coll .

Moving to event classes with higher event activity the
di↵erence decreases and eventually inverts for the events
with the highest activity.
The significance of this trend can be evaluated by cal-

culating the double ratio, NEXP
coll (i)/NEXP

coll (0%–100%) to
NGL

coll(i)/N
GL
coll(0%–100%) for the event selection i. In this

double ratio, the systematic uncertainties cancel. The
double ratio for 0%–5% and 60%–88% is 0.96± 0.05 and

Direct Photon Ncoll
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FIG. 1. The pT distribution at high pT of (a) neutral pi-

ons and (b) direct photons for di↵erent d+Au event activ-

ity classes compared to those from p+p collisions. Panel (c)

shows the ratio �dir/⇡0
. For better visibility some points are

slightly shifted in pT .

Invariant yields of ⇡0 and �dir covering the pT range
from 7.5 to 18 GeV/c are shown in Fig. 1, (a) and (b),
respectively. Both panels include the yield for d+Au (0%-
100%) and for six d+Au event classes selected by event
activity, with 0%–5% being the events with the largest
activity. Invariant yields measured in p+p [21, 57] are
also shown. The d+Au results for ⇡0 and for MB �dir

are consistent with previous measurements [21, 58]. Fig-
ure 1 (c) presents the �dir/⇡0 ratios. The �dir/⇡0 ratio for
d+Au (0%-100%) is consistent with that from p+p col-
lisions. This is also true for all d+Au event classes with
low to moderate event activity. The similarity of �dir/⇡0

for p+p and most d+Au collisions suggests that initial
state CNM e↵ects must be similar for the production of
high pT ⇡0 and �dir. This supports the conjecture that

the earlier observed enhancement of R⇡0

xA in x+A colli-
sions with low event activity [21] was caused by a bias
in the mapping of event activity to NGL

coll. In contrast,
the �dir/⇡0 ratio for the d+Au events with high activity
(0%–5%) is visibly larger than that for p+p. This hints
at the presence of final-state e↵ects in these events.
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FIG. 2. Values of NEXP
coll verses pT as defined in Eq. 2 for

three event d+Au classes, (a) 0%–100%, (b) 0%–5% and (c)

60%–88%. Also shown are fits to the data (solid lines) and the

corresponding valued NGL
coll (dashed lines). Panels (d) to (f)

show the nuclear-modification factors R⇡0

dAu,EXP, calculated

with Eq. 3, for the same event selections in (d) to (f) together

with fits to the data.

To further quantify the bias in mapping event activity
to NGL

coll, N
GL
coll and NEXP

coll are compared directly for the
di↵erent event classes. Figure 2, shows NEXP

coll verses pT
for (a) MB d+Au events (0%-100%), (b) high (0%–5%)
and (c) low (60%–88%) event activity. Included are the
average values of NEXP

coll determined from fits to the data
(solid lines) compared to NGL

coll (dashed lines) [55]. The
systematic uncertainties on NEXP

coll , ⇡16%, are dominated
by uncertainties on the p+p data set and thus are a com-
mon scale uncertainty for all d+Au event classes. The
NEXP

coll and NGL
coll agree well for 0%-100%, and are consis-

tent for all event selections within uncertainties. How-
ever, the di↵erence of NEXP

coll and NGL
coll has a clear trend

with event activity. The deviation is largest for events
with low activity, where NGL

coll is smaller than NEXP
coll .

Moving to event classes with higher event activity the
di↵erence decreases and eventually inverts for the events
with the highest activity.

The significance of this trend can be evaluated by cal-
culating the double ratio, NEXP

coll (i)/NEXP
coll (0%–100%) to

NGL
coll(i)/N

GL
coll(0%–100%) for the event selection i. In this

double ratio, the systematic uncertainties cancel. The
double ratio for 0%–5% and 60%–88% is 0.96± 0.05 and
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FIG. 1. The pT distribution at high pT of (a) neutral pi-

ons and (b) direct photons for di↵erent d+Au event activ-

ity classes compared to those from p+p collisions. Panel (c)

shows the ratio �dir/⇡0
. For better visibility some points are

slightly shifted in pT .

Invariant yields of ⇡0 and �dir covering the pT range
from 7.5 to 18 GeV/c are shown in Fig. 1, (a) and (b),
respectively. Both panels include the yield for d+Au (0%-
100%) and for six d+Au event classes selected by event
activity, with 0%–5% being the events with the largest
activity. Invariant yields measured in p+p [21, 57] are
also shown. The d+Au results for ⇡0 and for MB �dir

are consistent with previous measurements [21, 58]. Fig-
ure 1 (c) presents the �dir/⇡0 ratios. The �dir/⇡0 ratio for
d+Au (0%-100%) is consistent with that from p+p col-
lisions. This is also true for all d+Au event classes with
low to moderate event activity. The similarity of �dir/⇡0

for p+p and most d+Au collisions suggests that initial
state CNM e↵ects must be similar for the production of
high pT ⇡0 and �dir. This supports the conjecture that

the earlier observed enhancement of R⇡0

xA in x+A colli-
sions with low event activity [21] was caused by a bias
in the mapping of event activity to NGL

coll. In contrast,
the �dir/⇡0 ratio for the d+Au events with high activity
(0%–5%) is visibly larger than that for p+p. This hints
at the presence of final-state e↵ects in these events.
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FIG. 2. Values of NEXP
coll verses pT as defined in Eq. 2 for

three event d+Au classes, (a) 0%–100%, (b) 0%–5% and (c)

60%–88%. Also shown are fits to the data (solid lines) and the

corresponding valued NGL
coll (dashed lines). Panels (d) to (f)

show the nuclear-modification factors R⇡0

dAu,EXP, calculated

with Eq. 3, for the same event selections in (d) to (f) together

with fits to the data.

To further quantify the bias in mapping event activity
to NGL

coll, N
GL
coll and NEXP

coll are compared directly for the
di↵erent event classes. Figure 2, shows NEXP

coll verses pT
for (a) MB d+Au events (0%-100%), (b) high (0%–5%)
and (c) low (60%–88%) event activity. Included are the
average values of NEXP

coll determined from fits to the data
(solid lines) compared to NGL

coll (dashed lines) [55]. The
systematic uncertainties on NEXP

coll , ⇡16%, are dominated
by uncertainties on the p+p data set and thus are a com-
mon scale uncertainty for all d+Au event classes. The
NEXP

coll and NGL
coll agree well for 0%-100%, and are consis-

tent for all event selections within uncertainties. How-
ever, the di↵erence of NEXP

coll and NGL
coll has a clear trend

with event activity. The deviation is largest for events
with low activity, where NGL

coll is smaller than NEXP
coll .

Moving to event classes with higher event activity the
di↵erence decreases and eventually inverts for the events
with the highest activity.

The significance of this trend can be evaluated by cal-
culating the double ratio, NEXP

coll (i)/NEXP
coll (0%–100%) to

NGL
coll(i)/N

GL
coll(0%–100%) for the event selection i. In this

double ratio, the systematic uncertainties cancel. The
double ratio for 0%–5% and 60%–88% is 0.96± 0.05 and
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1.16± 0.07, respectively. Because NGL
coll and NEXP

coll agree
reasonably well for 0%–100% and events with large event
activity, it seems that NGL

coll underestimates the number
of hard scattering processes in events with low event ac-
tivity. This may have led to the previously observed en-
hancement of RxA for ⇡0 in p+Au, d+Au and 3He+Au
collisions [21].

Investigated next are possible nuclear modifications of
⇡0 production in d+Au collisions with high event activity.
The nuclear-modification factor is calculated using NEXP

coll
(as defined in Eq. 2) instead of NGL

coll:

R⇡0

dAu,EXP =
Y ⇡0

dAu

NEXP
coll Y ⇡0

pp

=
Y ⇡0

dAu/Y
⇡0

pp

Y �dir

dAu /Y
�dir

pp

. (3)
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FIG. 3. Average R⇡0

dAu,EXP as a function of NEXP
coll . Horizon-

tal and vertical bars are the statistical uncertainties. The

R⇡0

dAu,EXP for 0%–100% d+Au collisions is represented by a

blue line, with the statistical uncertainty given as a band.

The scale uncertainty of 16.5% is shown as a vertical band

around the 0%–100% R⇡0

dAu,EXP value. This uncertainty is

common to all data points.

In Fig. 2, panels (d) to (f) show R⇡0

dAu,EXP for the same
event classes as panels (a) to (c). Over the observed pT
range there is no appreciable pT dependence; the results
of fits to the data are also indicated. Within uncertain-
ties, R⇡0

dAu,EXP for 0%–100% is consistent with unity. The

same is true for R⇡0

dAu,EXP from the lowest event-activity
sample (60%-88%). In contrast, for the highest event-
activity sample (0%–5%), a small but significant sup-
pression of ⇡20% can be seen.

Figure 3 shows the evolution of the average R⇡0

dAu,EXP

as a function of NEXP
coll . Up to NEXP

coll of ⇡12, R⇡0

dAu,EXP is
constant and consistent with the 0%–100% value, and
within the scale uncertainty of 16.5% consistent with
unity or a few percent increase above unity, which would
be expected from CNM e↵ects [47]. However, above

NEXP
coll of 12, R⇡0

dAu,EXP decreases. For the collisions with
the largest activity, the reduction is quantified by a dou-
ble ratio in which the systematic uncertainties cancel:

R⇡0

dAu,EXP(0%–5%)

R⇡0

dAu,EXP(0%–100%)
= 0.806± 0.042, (4)

with a 4.5� deviation from unity. The same ratio for the
events with the smallest event activity is 1.017 ± 0.056,
consistent with unity.
In summary, with the simultaneous measurement of ⇡0

and �dir at high pT in d+Au collisions at
p
sNN = 200

GeV, PHENIX has established that the previously ob-
served enhancement of ⇡0 RdAu in events with low activ-
ity is likely caused by an event-selection bias in estimat-
ing NGL

coll within the GLM framework. The NEXP
coll based

on direct photons, introduced in this paper, provides
a more accurate approximation of the hard-scattering
contribution. Using NEXP

coll eliminates the enhancement,
while maintaining a 20% suppression of high pT ⇡0 in
events with high activity. The observed suppression is
qualitatively consistent with the predictions of energy
loss in small systems [24, 25]. If the suppression is in-
deed owing to hot-matter e↵ects, the yield of fragmenta-
tion photons within �dir may also be suppressed, which in
turn would lead to a slight underestimate of the suppres-
sion. Further studies of the system size dependence with
p+Au, d+Au, and 3He+Au collisions may shed more
light on the existence of droplets of QGP in small sys-
tems [45]. If QGP is formed, the ⇡0 suppression should
be larger in the larger 3He+Au systems and smaller in
the smaller p+Au system, while any remaining e↵ects of
a selection bias would likely have the opposite system-size
dependence.
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RdAu for MinBias

`pT-integrated RdAu vs Ncoll
EXP

• Scale uncertainty common 
to all points
• ≈ 20% suppression for 

most central events

• Overall: Using direct-photons to calculate 
Ncoll is consistent with past measurement 
(PRC 105, 064902, Fig. 9)
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Fig. 14. The 𝑣2 values for 𝜋0 in
Cu+Au collisions as a function
of 𝑝𝑇 for all centrality classes

Fig. 15. The 𝑣2 values for 𝜋0 in
Cu+Au collisions scaled with 𝜀2
as a function of 𝑝𝑇 for all
centrality classes

Fig. 16. The 𝑣2 values for 𝜋0 in
Cu+Au collisions scaled
with 𝜀2𝑁𝑝𝑎𝑟𝑡

1/3 as a function
of 𝑝𝑇 for all centrality classes

The values of 𝜀2 and 𝑁𝑝𝑎𝑟𝑡 in Cu+Au collisions were taken from Phys. Rev. C 94, 054910 (2016). 

v2 measurement at high pT; scales with eccentricity (ε), “linear” system size (Npart): 𝜀1×𝑁/234
⁄6 7

Consistent with prior Au + Au result (v2: PRC 88,064910; ε2, Npart: PRC 94, 054910)
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Collision size and density difference 

• No significant difference in the 
tendency of 0L dependence of 1MNOO
between Cu+Au and Au+Au.

Particle species difference

• No significant difference in 1MNOO
between charged hadrons and 2Ps.

WWND   Maya Shimomura/Energy Loss

Cu + Au
Au + Au

√sNN=200GeV

𝑆#"11 =
𝑝2
,(, − 𝑝23*()*

𝑝2
,(,

π0 fractional momentum loss vs pT
(integrated over all φ)
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Sloss ,Sloss,in Sloss,out vs. L

Feb/5/2023 13

*Similar results for the measured Q@ regions (4-10GeV/c)

Sloss of in-plain and out-of-plain 
- have similar tendency. 
- but, doesnʼt follow the same curve 

as a function of L. 

All three have different curves. 
WWND   Maya Shimomura/Energy Loss
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 pT < 10GeV/c≤9GeV/c 

 / ndf 2χ  20.35 / 12
p0        0.03766± 0.01967 
p1        0.7634± 1.233 
p2        0.09528±0.02957 − 

 / ndf 2χ  20.35 / 12
p0        0.03766± 0.01967 
p1        0.7634± 1.233 
p2        0.09528±0.02957 − 

in-plane 9.24GeV/c stat.err. syst.err.
out-of-plane 9.24GeV/c stat.err. syst.err.
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 pT < 9GeV/c≤8GeV/c 

 / ndf 2χ  20.94 / 12
p0        0.01391± 0.007561 
p1        0.7901± 1.646 
p2        0.05821± 0.005793 

 / ndf 2χ  20.94 / 12
p0        0.01391± 0.007561 
p1        0.7901± 1.646 
p2        0.05821± 0.005793 

in-plane 8.24GeV/c stat.err. syst.err.
out-of-plane 8.24GeV/c stat.err. syst.err.

fit function=p0*x^p1+p2
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 pT < 8GeV/c≤7GeV/c 

 / ndf 2χ  18.07 / 12
p0        0.03805± 0.02102 
p1        0.7179±  1.22 
p2        0.09526±0.03177 − 

 / ndf 2χ  18.07 / 12
p0        0.03805± 0.02102 
p1        0.7179±  1.22 
p2        0.09526±0.03177 − 

in-plane 7.24GeV/c stat.err. syst.err.
out-of-plane 7.24GeV/c stat.err. syst.err.
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 in plane

Sloss vs. path-length

Can see two clear trends for in- and 
out-of-plane Sloss

4 ≤ pT ≤ 10 GeV/c
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Jets
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Jet Yield vs Centrality

very consistent across centrality classes

also consistent with recent p + Au 
results 

Jets cross sections in pp and dAu

5J. Velkovska (Vanderbilt), Hard Probes 2023

The new PHENIX Preliminary supersedes the previously published result 
(PRL 116, 122301, erratum in preparation).
A problem discovered in noise suppression in EMCal in Run 8 pp and dAu.  

The small R anti-kt jet cross sections tend to be overpredicted by NLO
Similar findings by  STAR (PRL 97, 252001 (2006)) and CMS (PRC 96, 015202 (2017))
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Purpose: p + p baseline
Additional: modify simulation to better follow the data
• Found that Pythia prefers more charged particles in 

its jets than are present in data
• Can affect unfolding for structure quantities & 

uncertainty
• Method:

1. Find ratio of data/unmodified-Pythia for the 
distribution of charged particles w.r.t. the jet axis

2. Randomly remove constituent particles from the 
jets (charged and neutral) according to that 
distribution

3. Re-scale for the lost momentum
• Plot: cross-section unfolding with corrected/tuned 

simulation
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Distribution of 
particles w.r.t. the 
jet axis:

∆𝑅 ≡ ∆𝜑1 + ∆𝜂1

This is the variable 
used to modify the 
Pythia-generated 
prior.
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Distribution of charged 
particle transverse 
momentum w.r.t. the jet 
axis (transverse 
fragmentation)

Jet fragmentation transverse momentum ALICE Collaboration

1 Introduction

Jets are groups of collimated particles mainly resulting from fragmentation of hard scattered partons
produced in high-energy particle collisions. Jet production in quantum chromodynamics (QCD) [1–5]
can be thought as a two-stage process [6]. After being produced in the hard scattering, partons reduce
their virtuality by emitting gluons [7]. Since the momentum transfer scale (Q2) is large during the
showering, perturbative QCD calculations can be applied. When Q

2 becomes of the order of LQCD,
partons hadronise into final-state particles through processes that cannot be calculated perturbatively [8–
14]. Instead, the implementation of specific hadronisation models in Monte Carlo event generators such
as PYTHIA [8] and Herwig [10] can be used.

In this work the fragmentation of partons is studied using the jet fragmentation transverse momentum,
jT. The jT is defined as the perpendicular component of the momentum of the constituent particle with
respect to reconstructed jet momentum, ~pjet. The length of the ~jT vector is

jT =
|~pjet ⇥~ptrack|

|~pjet|
, (1)

where ~ptrack is the momentum of the constituent particles. It is one of many jet shape observables to study
the properties of fragmenting particles with respect to the initial hard momentum during the fragmenta-
tion process. The jT provides a measurement of the transverse momentum spread of the jet fragments.

Previously, jT has been studied using two-particle correlations where jT is calculated for particles with
respect to the highest transverse momentum particle in each event instead of reconstructed jet. The
study using the correlation method was done by the CCOR collaboration at ISR in pp collisions at
centre-of-mass energies

p
s = 31, 45 and 63 GeV [15] and by the PHENIX collaboration at RHIC in

pp collisions at
p

s = 200 GeV [16] and d–Au collisions at a center-of-mass energy per nucleon pairp
sNN = 200 GeV [17]. The results showed no clear dependence on the transverse momentum (pT) of

the trigger particle. Jet measurements to study jT were done by the CDF collaboration in pp̄ collisions
at

p
s = 1.96 TeV [18] at Tevatron, by the ATLAS collaboration in pp at

p
s = 7 TeV [19] and by the

LHCb collaboration in pp collisions at
p

s = 8 TeV [20] at the LHC. The results show a dependence of
the width of jT distributions with respect to the pT of jets at the LHC energies.

Jets are used as an important probe for the study of the deconfined phase of strongly interacting matter,
the quark–gluon plasma (QGP) that is formed in high-energy collisions of heavy nuclei. There exists
plenty of experimental evidence of jet energy loss, such as the suppression of inclusive hadron spectra at
high transverse momentum [21–25], the modification of back-to-back hadron-hadron [26, 27] and direct
photon-hadron correlations [28], hadron–jet correlations [29, 30], the modification of reconstructed jet
spectra [31, 32] and jet substructure [33–36], as compared to the expectations from elementary proton-
proton collisions.

Jet quenching in heavy-ion collisions evolves multi-scale steps from hard to soft processes [37, 38]. Hard
scales dominate in the elementary hard scattering. The hard scattering is followed by the subsequent
branching process down to non-perturbative scales. Soft scales, of the order of the temperature of the
medium, characterise interactions of soft partons produced in the shower with the QGP. Soft scales also
govern hadronisation, which is expected to take place in vacuum for sufficiently energetic probes, even
though some changes can persist from modifications of colour flow [39–41]. Understanding the contri-
butions from the different processes to the jet shower evolution in medium and their scale dependence
is crucial to constrain the dynamics of jet energy loss in the expanding medium [42], and fundamental
medium properties like the temperature-dependent transport coefficient [43, 44]. Besides heavy-ion col-
lisions one should study also smaller systems such as p–Pb in order to get an important baseline. Cold
nuclear matter effects [45–47] in p–Pb collisions need to be considered to interpret the measurements in
heavy-ion collisions.
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Momentum sharing fraction: 
direct probe of QCD splitting 
functions

𝑧! =
min 𝑝"! , 𝑝""
𝑝"! + 𝑝""

(Calculated for all 
constituent particles, not 
just charged)
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…

Fraction of jet 
momentum carried by 
charged particle 
(fragmentation 
function):

𝜉 = − ln 𝑧

= − ln
�⃗� - 𝑝#$%
𝑝	𝑝#$%

 = -ln(z)ξ
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Heavy Flavor
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FIG. 15. The nuclear modification of charm and bottom hadrons as a function of pT for di↵erent centrality classes. The
yellow box at unity is the uncertainty on the total normalization.
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FIG. 16. The RAA for c ! e and b ! e as a function of Npart in three di↵erent pT ranges. Data points for c ! e and
b ! e are shifted by -2 and +2 from their respective Npart for clarity.

arxiv:2203.17058

• Results from unfolding after 
removing all non-HF 
electrons/positrons (consistent 
with STAR: Eur Phys J C 82:1150, 
Fig 9b).

• All centralities show suppression 
of both charm and bottom at 
pT > 5 GeV/c

• Charm is suppressed more 
strongly

5

FIG. 1. Definition of the distance of the closest approach
DCAT in the transverse plane (normal to the beam direction).

C. Background estimation

1. Misreconstruction

In a high-multiplicity environment, tracks are acci-
dentally reconstructed with hits from di↵erent particles.
Misreconstructed tracks have two sources: (i) misiden-
tified hadrons composed of tracks accidentally matching
RICH Čerenkov rings or EMCal clusters; and (ii) mis-
matches between DC tracks and uncorrelated VTX hits.

The misidentified hadron-track contamination is esti-
mated with a sample of tracks where the sign of their
z-direction is swapped. The swapped tracks that, after
being projected to RICH, match Čerenkov rings provides
the expected number of misidentified hadrons. Charged
hadrons with momentum p > 4.7 GeV/c also radi-
ate Čerenkov light and make RICH hits, meaning the
swap method underestimates the fraction of misidenti-
fied hadrons. The contamination at high pT is estimated
by the dep template method, in which the measured dep
distribution is assumed to be the sum of the electron dis-
tribution and the hadron-background distribution. The
dep template for the electron distribution is obtained
by the RICH-swap method for pT  4.5 GeV/c, where
the hadron contamination is very small. The dep tem-
plate for hadron backgrounds is obtained by vetoing the
electron candidates from all reconstructed tracks. The
measured dep distribution for pT > 4.5 GeV/c is fitted
with the electron and hadron background templates. An
example of the dep template method is shown in Fig. 2
for electron candidates at 6 < pT < 7 GeV/c in MB
Au+Au collisions. The electron signal in the dep dis-
tribution is centered at dep = 0. The background tail

5− 4− 3− 2− 1− 0 1 2 3 4 5
 dep

10

20

30

40

50

60
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ou

nt
s

data
electron
hadron bkg

: 6-7 GeV/c
T

p

FIG. 2. A fit result of the dep distribution for electron can-
didates with pT = 6–7 GeV/c in MB Au+Au collisions. The
red and green distributions are the estimated contributions
for electrons and hadron backgrounds.

due to hadrons overlaps the signal region. The hadron
background increases at higher pT .
The mismatch between DC tracks and uncorrelated

VTX hits is estimated by the VTX swap method, which
intentionally creates a mismatch by changing the angle of
DC tracks by 10 degrees in the �–⌘ plane. The 10-degree
rotation is su�ciently larger than the angular resolution
of the DC such that the rotated tracks are never con-
nected with VTX hits belonging to the same particle.

2. Photonic background

Photonic electrons are the main background source in
this analysis. They are produced by internal conversions
(Dalitz decay) and photon conversions at the beam pipe
and the first VTX layer. Photonic conversions produced
in the other layers of the VTX do not produce tracks ac-
cepted by the tracking algorithm because the presence of
a hit in the first layer is required. Electron pairs from con-
verted photons have a small opening angle, therefore it is
required that an electron track should not have a neigh-
boring electron track with �0.02 < chrg ⇥�� < 0.04 ra-
dian for pT < 1.8 GeV/c and narrower for high pT , where
chrg is the charge of the track and �� is the azimuthal
di↵erence of electron pairs. This isolation cut minimizes
the contamination from internal and external conversion
electrons, and is the same as described in Ref. [12].

The number of electrons obtained after removing back-
ground from misidentified and mismatched tracks but be-
fore the isolation cut, (Ne), is the sum of photonic (NP )
and nonphotonic sources (NNP):

Ne = NP +NNP, (1)

while the number of electrons after the isolation cut is

Ñe = "P ⇥ "UC ⇥NP + "UC ⇥NNP, (2)
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arxiv:2203.17058
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FIG. 15. The nuclear modification of charm and bottom hadrons as a function of pT for di↵erent centrality classes. The
yellow box at unity is the uncertainty on the total normalization.
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FIG. 16. The RAA for c ! e and b ! e as a function of Npart in three di↵erent pT ranges. Data points for c ! e and
b ! e are shifted by -2 and +2 from their respective Npart for clarity.

RAuAu (pT integrated)
vs Npart

• Charm pT dependence
• pT < 1.4 GeV/c:

RAuAu ≈ 1
• 2.6 < pT < 3 GeV/c:

charm suppressed
• pT > 5 GeV/c:

both suppressed
• Mass-ordering
• charm loses more 

energy in the QGP
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PHENIX Jet/HF/high-pT physics remain a vibrant area of data analysis!
High-pT

p+p @ 510 GeV cross-section and pT < 12 GeV/c underestimation by theory
p+p ALL consistent with positive spin-contribution from gluons
New way to measure Ncoll with midrapidity direct photons
Decay-product species’ azimuth-integrated Sloss consistent in Au + Au
Cu + Au azimuth-integrated Sloss vs pT behaves like Au + Au
In-plane/Out-of-plane Sloss shows clear difference w.r.t. path length

Jets
Tuning Pythia to fit data using that program’s excess of charged particles in jets
p + p baseline for jet structure quantities

Heavy Flavor
Au + Au charm- and beauty-derived RAuAu
RAuAu vs Npart shows mass-ordering in QGP interactions

Dan Richford
drichford@gradcenter.cuny.edu
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Backup Slides
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• Clusters and tracks are combined 
using an anti-kT algorithm
• Get R = 0.3 jets

• Make cuts
• Unfolding to account for detector 

effects (see diagram)

• For sub-structure, unfolding is done 
between jet-pT and a particular sub-
structure quantity

• Pythia prior probability used to 
match the mean number of charged 
particles in jet vs pT
• Tuned iteratively


