Recent Jet, Heavy-Flavor, and High- p_T results from PHENIX

Dan Richford for the PHENIX Collaboration

2023 AGS/RHIC Users Meeting

2:10 p.m., Wednesday, August 2, 2023

PHENIX

Detector

High p_T

PH#ENIX Direct photon cross-section (p + p)

Phys. Rev. Lett. 130, 251901 (2023) https://arxiv.org/abs/2202.08158

- Agreement with NLOpQCD @ $p_T \gtrsim 12$ GeV/c
 - Consistent with prior results
 (PRD 86, 072008: Fig 10)

• Underestimates @ $p_T \lesssim 12 \text{ GeV/c}$

Direct photon $A_{LL}(p + p)$

Phys. Rev. Lett. 130, 251901 (2023) https://arxiv.org/abs/2202.08158 https://www.bnl.gov/newsroom/news.php?a=121250

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

 A_{LL} (double helicity asymmetry) for direct photons isolates the gluon contribution because $q + g \rightarrow q + \gamma$ dominates at RHIC at pT > 5 GeV/c

PHENIX data follows the $\Delta g > 0$ polarized gluon PDF

• Gluon spins aligned with proton spin

PH#ENIX N_{Coll} from direct photons (d + Au) (1/4)

http://arxiv.org/abs/2303.12899

- Purpose: Demonstrate alternative way to calculate N_{coll}
 - Glauber model (forward rapidity)
 - Measured direct photons (midrapidity)
- Motivation
 - For small systems, a high-pT particle at mid-rapidity is not available to hit forward detectors

1410 EDT, Wednesday, August 2,2023

N_{Coll} from Direct Photons (4/4)

http://arxiv.org/abs/2303.12899

PH ENIX

 p_T -integrated R_{dAu} vs N_{coll}^{EXP}

- Scale uncertainty common to all points
 - ≈ 20% suppression for most central events

 Overall: Using direct-photons to calculate N_{coll} is consistent with past measurement (PRC 105, 064902, Fig. 9)

 v_2 measurement at high p_T ; scales with eccentricity (ϵ), "linear" system size (N_{part}): $\epsilon_2 \times N_{part}^{1/3}$ Consistent with prior Au + Au result (v_2 : PRC 88,064910; ϵ_2 , N_{part} : PRC 94, 054910)

PH ENIX S_{loss} for charged hadrons vs π^0 (Au + Au) (1/3)

Hadron fractional momentum loss ("Left-shift" as opposed to "down-shift")

S_{loss} for π^{0} (*Cu* + *Au*) (2/3)

 π^{0} fractional momentum loss vs p_{T} (integrated over all φ)

 $4 \le p_T \le 10 \text{ GeV/c}$

Jets

Jet Yield vs. Centra

0000

р

Particle Jet

PH $\overset{}{\times}$ ENIXJet cross-section, structure (p + p) (1/5)

1410 EDT, Wednesday, August 2,2023

Purpose: p + p baseline

Additional: modify simulation to better follow the data

- Found that Pythia prefers more charged particles in its jets than are present in data
 - Can affect unfolding for structure quantities & uncertainty
- Method:
 - 1. Find ratio of data/unmodified-Pythia for the distribution of charged particles w.r.t. the jet axis
 - 2. Randomly remove constituent particles from the jets (charged and neutral) according to that distribution
 - 3. Re-scale for the lost momentum
- Plot: cross-section unfolding with corrected/tuned simulation

PH#ENIXJet cross-section, structure (p + p) (2/5)

Distribution of particles w.r.t. the jet axis:

$$\Delta R \equiv \sqrt{\Delta \varphi^2 + \Delta \eta^2}$$

This is the variable used to modify the Pythia-generated prior.

PH#ENIXJet cross-section, structure (p + p) (3/5)

$$j_{\rm T} = \frac{|\vec{p}_{\rm jet} \times \vec{p}_{\rm track}|}{|\vec{p}_{\rm jet}|}$$

Distribution of charged particle transverse momentum w.r.t. the jet axis (transverse fragmentation)

PH#ENIXJet cross-section, structure (p + p) (4/5)

Momentum sharing fraction: direct probe of QCD splitting functions

$$z_g = \frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}}$$

(Calculated for all constituent particles, not just charged)

PH#ENIXJet cross-section, structure (p + p) (5/5)

• • •

Heavy Flavor

PH $\overset{}{\times}$ ENIX Heavy-flavor R_{AuAu} (Au + Au) (1/2) --- data p_: 6-7 GeV/c electron

hadron bko

- Results from unfolding after removing all non-HF electrons/positrons (consistent with STAR: Eur Phys J C 82:1150, Fig 9b).
- All centralities show suppression of both charm and bottom at pT > 5 GeV/c
- Charm is suppressed more \bullet strongly

2.5

0%-10%

10

p_[GeV/c]

12

arxiv:2203.17058

- R_{AuAu} (p_T integrated) vs N_{part}
- Charm p_T dependence
 - $p_T < 1.4 \text{ GeV/c:}$ $R_{AuAu} \approx 1$
 - $2.6 < p_T < 3 \text{ GeV/c:}$ charm suppressed
 - $p_T > 5$ GeV/c: both suppressed
- Mass-ordering
 - charm loses more energy in the QGP

Summary (the end)

PHENIX Jet/HF/high-pT physics remain a vibrant area of data analysis!

High-pT

- p+p @ 510 GeV cross-section and $p_T < 12 \text{ GeV/c}$ underestimation by theory
- *p*+*p* A_{*LL*} consistent with positive spin-contribution from gluons
- New way to measure N_{coll} with midrapidity direct photons
- Decay-product species' azimuth-integrated S_{loss} consistent in Au + Au
- Cu + Au azimuth-integrated S_{loss} vs p_T behaves like Au + Au
- In-plane/Out-of-plane S_{loss} shows clear difference w.r.t. path length

Jets

Tuning Pythia to fit data using that program's excess of charged particles in jets p + p baseline for jet structure quantities

Heavy Flavor

Au + Au charm- and beauty-derived R_{AuAu} R_{AuAu} vs N_{part} shows mass-ordering in QGP interactions

Dan Richford drichford@gradcenter.cuny.edu

Index

Slide Number	Contents	Slide Number	Contents
1	Title	15	Jet Yield vs. Centrality (dAu)
2	Detector Schematic Picture	16	Jet cross sect., structure (1/5): cross section
3	Sub-Title: High pT	17	Jet cross sect., structure (2/5): Delta-R
4	Direct photon cross section (pp)	18	Jet cross sect., structure (3/5): jT
5	Direct photon helicity (pp)	19	Jet cross sect., structure (4/5): zg
6	Ncoll from direct photons (1/4): yield	20	Jet cross sect., structure (5/5): xi
7	Ncoll from direct photons (2/4): Ncoll vs pT	21	Sub-Title: Heavy Flavor
8	Ncoll from direct photons (3/4): RdA vs pT	22	HF RAuAu (1/2) (vs pT)
9	Ncoll from direct photons (4/4): RdA vs Ncoll	23	HF RAuAu (2/2) (vs Npart)
10	v2 (CuAu)	24	Summary
11	Sloss (1/3): species dependence in AuAu	25	~ This Index ~
12	Sloss (2/3): Cu + Au	26	Sub-Title: Backup Slides
13	Sloss (3/3): Azimuthal Sloss vs path length	26	Jet reconstruction overview
14	Sub-Title: Jets		

Backup Slides

Jet reconstruction

- Clusters and tracks are combined using an anti-k_T algorithm
 - Get R = 0.3 jets
- Make cuts
- Unfolding to account for detector effects (see diagram)

- For sub-structure, unfolding is done between jet-p_T and a particular substructure quantity
- Pythia prior probability used to match the mean number of charged particles in jet vs p_T
 - Tuned iteratively