sPHENIX Experiment at RHIC Data recorded: 2023-05-22, 02:07:00 EST

Run / Event: 7156 / 12

Collisions: Au + Au @ 200 GeV

Progress toward heavy flavor measurements in sPHENIX

Antonio Silva for the sPHENIX Collaboration 2023 RHIC/AGS Annual Users' Meeting

Aug 2nd, 2023 antonio.sphenix@qmail.com

sPHENIX

The conclusion of a 20+ years scientific journey

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

2015 US NP LRP

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

• sPHENIX is the first new detector at any hadron collider in over a decade!

- A compact detector with unique, purpose-built capabilities never before deployed at RHIC
- Different initial conditions and evolution for QGP at RHIC and LHC
 - Study of scale and temperature dependence

Heavy-flavor physics program

Open heavy flavor

Vary momentum/mass of the probe

Upsilon spectroscopy

Vary size of the probe

Heavy-flavor jets

Vary momentum/angular size of the probe

Cold QCD

Vary temperature of QCD matter
HF spin asymmetry

RHIC run plan 2023-2025

Year	Beam	√s _{NN} (GeV)	Cryo Weeks	Physics Weeks	£ _{samp} (z <10cm)
2023	Au+Au	200	24	9	4.5 nb ⁻¹
2024	р+р	200	24	12	45 pb ⁻¹
	p+Au	200	-	5	0.11 pb ⁻¹
2025	Au+Au	200	24	20.5	21 nb ⁻¹

• Year 1: Commissioning, calibration and first physics

sPHENIX Beam Use Proposal

- Year 2: Cold QCD and heavy-ion reference
- Year 3: Large Au+Au dataset
- → High rate DAQ (15 kHz): trigger capability with streaming readout

"The PAC urges BNL Management and the DOE to do everything possible to ensure sufficient beamtime to accomplish the physics goals in Runs 23, 24, 25 set out for sPHENIX in the 2015 NSAC Long Range Plan."

PAC Meeting June 2022: https://indico.bnl.gov/event/15148/ PAC Recommendations:

https://www.bnl.gov/npp/docs/2022-npp-pac-recommendations-final.pdf

The sPHENIX detector

ZDC

Upsilon and track resolution

- $p_{\rm T}$ resolution < 2% for $p_{\rm T}$ < 10 GeV/c
- Meets invariant mass resolution < 125 MeV/c² for Y(2S) and Y(3S) direct separation for the first time at RHIC

Upsilon and track resolution

100 Hz ZDC, MBD Prescale: 2, HV: 4.45 kV GEM, 45 kV CM, X-ing Angle: 2 mrad 2023-06-23, Run 10931 - EBDC03 reference frame 43

Time-projection chamber (TPC)

- Ungated continuous readout
- Reconstruction of heavy-flavor electrons and hadron decays
- 150 μ m r ϕ resolution
- $\Delta p/p \sim 1\%$ at 5 GeV/c charged particles
- TPC outer tracker (TPOT) used for calibrations

- TPC event display during commissioning phase
- High voltage and magnet are on

Upsilon and electron identification

- $|\eta|$ < 1.1, full azimuthal coverage
- <u>Identification of electrons from HF decays and HF-jets</u>
- Towers with $\sim 0.025 \times 0.025$ in $\eta \times \phi$
- EM \triangle E/E ~5% + 16%/ \sqrt{E}

- EMCal commissioning
 - Di-photon invariant mass distribution
 - No energy calibration

Quarkonium

^{*}Considering the Y(3S) suppression observed at the LHC. Nucl. Phys. A879 25. (2012).

 Centrality- and p_T-differential R_{AA} measurements

- Clear distinction of three Upsilon states
 - Probing the QGP with color dipoles at three length scales
- Kinematic range allows for comparison between RHIC and LHC measurements

Open heavy flavour: DCA resolution

- Crucial for the open heavy flavor and heavy-flavor jets program
- Separation of prompt and non-prompt D⁰ Proxy for B mesons

Antonio Silva

INTT+MVTX

Reconstruction of heavy-flavor decay topology

0.08

D⁰ DCA [cm]

Open heavy flavor: MVTX

0.008 0.007 0.006 0.005 0.005 0.004 0.003 0.002 0.001 1 10 p_ [GeV] MVTX: MAPS based vertex tracker

- ALPIDE chip near copy of the ITS2 inner layer from ALICE
- ~5 µm position resolution

Critical for reconstruction of the open heavy-flavor decay topology

Correlation between layer 1 and 2 of the MVTX

Open heavy flavor: INTT

INTT: silicon strip tracker

- 78 µm pitch
- Single beam-crossing timing

Correlation between **INTT and TPOT clusters**

Open heavy flavour measurements

- Study of heavy-flavor energy loss (R_{ΔΔ})
 - Interplay between collisional and radiative energy loss
- Study of collective effects (v_2)
 - Access to the bottom quark collectivity
- High precision measurements → deeper understanding of the interaction mechanisms between heavy-quarks and the QPG

HF flow, baryons, and spin asymmetry

 $(\Lambda_c^+ + \overline{\Lambda_c})/(D^0 + \overline{D}^0)$

- Heavy-flavor flow: $D^0 v_1$ \circ Separated for D^0 and $\overline{D^0}$
- Charmed baryon Λ_c
 - \circ Λ_c /D ratio for central Au+Au and p+p
- D^0 transverse single spin asymmetry in p+p at \sqrt{s} = 200 GeV

Heavy-flavor jets: D-tagged jets

- **Full jet reconstruction** → tracking + calorimeters
- Strong rejection of combinatorial jets at low momentum
- Wide range of jet structure measurements
- Interesting comparison to b-jets and inclusive jets

Antonio Silva

15

Heavy-flavor jets: b-jets

lorh

16

- First b-jet tagging at RHIC
 - Track DCA based tagger
 - Secondary vertices tagger
- Full jet reconstruction → tracking + calorimeters

Heavy-flavor jets: HCal

Heavy-flavor jet reconstruction

- Combination of tracking and calorimeters
- Implementation of particle flow

- Outer and Inner HCal
 - First hadronic calorimeter at midrapidity at RHIC
 - $|\eta|$ < 1.1, full azimuthal coverage \rightarrow HF-jets

Antonio Silva 1

Inner and Outer HCal commissioning

Inner (left) and Outer (right) HCal total energy as a function of MBD charge

Summary

- All sPHENIX subsystems are progressing well during the commissioning phase
- The conclusion of a scientific mission to probe the inner workings of the QGP and resolving its properties
 - Heavy flavor is an important part of this mission
- Unique capabilities to probe the QGP at distinct length and mass scales at RHIC
 - Y(2S) and Y(3S) measurements at RHIC
- Open heavy flavor and heavy-flavor jet physics programs
 - Precision tracking
 - Including hadrons originating from b quarks
 - Full jet reconstruction
 - b-jets and HF-hadron tagged jets

Backup slides

Potential 2 more years run 2026-2027

Year	Beam	√s _{NN} (GeV)	Cryo Weeks	Physics Weeks	£ _{samp} (z <10cm)
2026	р+р	200	28	15.5	80 pb ⁻¹
	0+0	200	1	2	37 nb ⁻¹
	Ar+Ar	200	1	2	12 nb ⁻¹
2027	Au+Au	200	28	24.5	30 nb ⁻¹

Quarkonium measurements

30

- CMS measurement
- CMS-HIN-21-007, CERN-EP-2023-011

Quarkonium measurements

Y(1S), Y(2S) and Y(3S) R_{AA} as a function of centrality

Comparison to LHC measurements