Femtoscopy in BES

Yevheniia Khyzhniak

2023 RHIC/AGS Annual Users' Meeting

Femtoscopy/Motivation

- Access to the spatial and temporal information about a particle-emitting source
- Different particle species are sensitive to various effects (FSI, shear and bulk viscosity, temperature, space and time emission asymmetries, etc...)
- Strong model constraints

1)
$$C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^* = \frac{measured}{Bckg(k^*)}$$

 $S(r^*)$ - emission function
 $\Psi(k^*, r^*)$ - two-particle wave function (includes e.g. FSI interactions)

2)
$$C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^* = \frac{Sgnl(k^*)}{Bckg(k^*)}$$

 Q_{inv}

_ongitudinal Co-Moving System - LCMS

Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

- The radii decrease for more peripheral events due to the smaller geometric size of the initial participant region and the subsequent emission region at freezeout.
- For R_{long}, the slopes appear to remain similar for the different energies, but the magnitude of R_{long} increases with energy for all centralities.
- The decrease in transverse and longitudinal radii at higher mT are attributed to transverse and longitudinal flow.
- Larger mT pairs are emitted from smaller emission regions with less correspondence to the size of the entire fireball. For both Rout and Rside the different beam energies show similar trends both in magnitude and slope.

• The λ parameter primarily represents the fraction of correlated pairs entering the analysis. This suggests that the fraction of pions in this kT range from long-lived resonances increases at lower energy but remains rather constant at higher energies (same for mT dependence)

The fixed-target STAR points are consistent with this trend within the uncertainties.

BES-II data

More data on Quark

Matter 2023

- Difference between experiments can be due to acceptance effects, centrality determination and choice of analyzing charges separate or together
- * Interesting behavior of HADES data \rightarrow importance of the BES-II results

- Space and time scale as ~ multiplicity^1/3
- Radii follow a common universal trend independent of the collision species?
- "Universal" scaling of femtoscopic radii with final state multiplicity is violated by the pp data.
- It shows that any scaling law must take into account the initial configuration of the collision.
- The difference may be due to the interactions in the bulk medium formed in heavy ion collisions.

- The created system lives longer, however no sudden jumps in timescales in Rlong
- One may significantly underestimate the actual lifetimes due to use of, which do not take non-zero flow into account:

$$R_{\text{long}} = \tau \sqrt{\frac{T}{m_T} \frac{K_2(m_T/T)}{K_1(m_T/T)}}$$
$$\mathbf{Q}$$
$$R_{\text{long}}^2 = \tau_{\text{max}}^2 \frac{T_{\text{max}}}{m_T \cosh y_T} (1 + \frac{3T_{\text{max}}}{2m_T \cosh y_T})$$

• More results \rightarrow **Quark Matter 2023**

- Now that the predicted Rout /Rside energy systematic has been revealed, it deserves theoretical attention from hydro and transport modelers. The magnitude and width of the structure may allow an estimate of the latent heat of the QCD deconfinement transition.
- While collective flow complicates the interpretation, an extended emission timescale will increase Rout relative to Rside. A long emission timescale may arise if the system equilibrates close to the deconfinement phase boundary and then evolves through a first-order phase transition in the QCD phase diagram

F. Retière and M. A. Lisa, Phys. Rev. C 70, 044907 (2004).

- Both quantities exhibit a clear peak at ~ 20 GeV, an interesting energy where other observables show nontrivial trends with energy.
- Long-sought peak structure that may be caused by the system evolving through a first-order phase transition from the QGP to the hadronic phase.

Kaons in BES

- To test assumptions:
 - \circ Larger fraction of primarily produced charged kaons as compared to pions
 - \circ More penetrating probe (smaller kaon-nucleon cross-section w.r.t pions)
 - \circ Due to the strange quark content, may carry information about different collision stage
- Both pions and kaons provide constraints on theoretical models
 - Possibility to distinguish between different model scenarios
- Check for $m_{\rm T}$ dependence \rightarrow determine freeze-out conditions

Kaons in BES

PHYSICAL REVIEW C 92, 034914 (2015)

- mT-scaling breaks for individual radii
- Longer emission duration of kaons than of pions
- Models cannot describe the differences in the outward direction well
- STAR also observes the mt-scaling breaking

Pions in BES: asHBT

None of the models predict all observables simultaneously. The UrQMD model, while it matches
the freeze-out shapes well, matches the momentum space observables less well. And the
hydrodynamic models, while they are able to describe the momentum space pT spectra and v2
results, do less well at predicting the eccentricity and trends observed in HBT analyses.

 \circ Sensitive to the equation of state used in the hydrodynamic models.

 \circ Has the potential to resolve ambiguities between models with different initial conditions and values of η/s .

Space-time asymmetry in emission process

 $C(\boldsymbol{q}) = \sum_{l,m} C_l^m(q) Y_l^m(\theta, \phi)$ $C_l^m(q) = \int_{\Omega} C(q, \theta, \phi) Y_l^m(\theta, \phi) d\Omega$

 Ω – full solid angle $Y_l^m(\theta, \phi)$ – spherical harmonic function $q = |\mathbf{q}|, \theta, \phi$ – spherical coordinates

 Lighter particles are emitted closer to the center of the source and/or later than heavier particles. Heavier particles have stronger push towards the edge of the
 source than lighter particle

A. Kisiel Phys. Rev. C81:064906 2010
A. Kisiel and D. A. Brown Phys. Rev. C80:064911 2009
P. Danielewicz and S.Pratt. Phys. Lett. B618: 60 2005
P. Danielewicz and S.Pratt. Phys. Rev. C75:034907 2007

- The obtained source sizes are the biggest in the case of parametrization with the larger resonance mass (Achasov)
- Obtained source sizes for Antonelli parametrization are consistent among all the kaon combinations, which favors the assumption that a0(980) resonance could be a tetraquark

- Correlation functions are fitted with different theory predictions for strong parameters
- KOS KOS analysis
 - Final state SI significantly affects these correlations due to two near-threshold resonances a0(980) and f0(980)

• K0S K± analysis

 \circ Parametrization with a0(980) perfectly represents the signal region in the correlation function

0.4

0.4

- First measurement of antiproton-antiproton final strong interaction
- fo and do for the antiproton-antiproton interaction consistent with parameters for the proton-proton interaction
- Descriptions of the interaction among antimatter (based on the simplest systems of antinucleons) determined
- A quantitative verification of matter-antimatter symmetry in context of the forces responsible for the binding of (anti)nuclei

The scattering length f₀: determines low-energy scattering. The elastic cross section, σ_e , (at low energies) determined solely by the scattering length, d₀ - the effective range of strong interaction between two particles. It corresponds to the range of the potential in an extremely simplified scenario - the square well potential. f₀ and d₀ two important parameters of strong interaction between two particles. Theoretical correlation function depends on: source size, k⁺, f₀ and d₀.

Proton-deutron correlations

- Correlation functions with directly produced deuterons from SMASH can only qualitatively reproduce the overall trends, but over/under estimate the data depending on the particle pair
- Experimental data are well reproduced by the SMASH plus coalescence calculations
 - \circ Deuterons are likely formed via the nucleon coalescence processes

Proton-hyperons correlations

- Search for a possible bound state of Y-N and Y-Y $\,$
- Search of exotic hadronic states such as H-dibaryon (uuddss)

R. L. Jaffe, PRL 38 (1977), 195

- Hyperons are expected to appear in the core of neutron stars
- Hyperons softens the EoS, which leads to reduction on maximum neutron star mass
- Not consistent with the experimental results -> hyperon puzzle
- One of the possible solution: EoS stiffness by repulsive two- and three-body hyperonic interactions
- Strength of these interactions at high density can not be fully constrained by the present experimental data on YN scattering and hypernuclei
 - A detailed understanding of the interaction among nucleons has been obtained by studies of deuteron properties and scattering experiments On the contrary, the interaction of baryons containing strange quarks, so-called hyperons, is only barely known
 - $\circ~\mbox{Opportunity}$ to measure strong interaction potential and scattering length

Strange correlations

• pΛ

- $\,\circ\,$ Attractive potential between protons and lambdas
- Femtoscopic radius was extracted 50% lower then the one for regular BB pairs -> residual correlations in baryon-antibaryon femtoscopic correlations

Phys. Rev. C 89 (2014) 5, 054916

• pΩ

 $\circ~$ Scattering length is positive and favor $p\Omega$ bound state hypothesis

• pΞ

Sensitive to system size, more attractive in peripheral collisions (smaller collision system)

ΛΛ

- Femtoscopy allows one to explore:
 - \odot Size of the emission source (one-dimentional, three-dimensional femtoscopy)
 - \circ Lifetime (R_{out})
 - \odot Emission duration (R_{long})
 - System dynamics (kт, mт, energy dependences, non-identical particle correlations)
 - \circ Source shape (asHBT w.r.t second-order event plane, Levy-analysis)
 - \circ Orientation (asHBT w.r.t first-order event plane)
 - \circ Interactions (non-traditional femto.)
 - \Box Search for bound states (non-traditional femto.)
- Powerful tool for the constraint of models

Thank you for the attention!

- Finite-size scaling:
 - At critical point, susceptibilities diverge for infinite system → delta function
- For finite system:
 - No divergence
 - Peaking at CP and shift of the peak position
 - Broadened peaks

The radius R_{side} is primarily associated with the spatial extent of the particle-emitting region, whereas R_{out} is also affected by dynamics [23,24] and is believed to be related to the duration of particle emission [63,64].

It has long been suggested [50,51,63] that a long particleemission duration could result in R_{out} becoming much larger than R_{side} . In the simplest scenario of a static, nonflowing source, the emission time is given by [65]

$$(\beta \Delta \tau_{\text{static}}) = R_{\text{out}}^2 - R_{\text{side}}^2, \qquad (17)$$

where $\beta = \frac{k_T}{m_T}$ is the speed of one of the pions in the source rest frame. For a flowing source such as those created at RHIC, however, Eq. (17) is unreliable [22] as the dimensions of the homogeneity region probed by low-q pion pairs is affected differently in the out and side directions. Indeed, for some sources R_{out} may be smaller than R_{side} [23], in which case Eq. (17) would yield imaginary emission times.

Finite-size scaling:

- At critical point, susceptibilities diverge for infinite system → delta function
- For finite system:
 - No divergence
 - Peaking at CP and shift of the peak position
 - Broadened peaks

The radius R_{side} is primarily associated with the spatial extent of the particle-emitting region, whereas R_{out} is also affected by dynamics [23,24] and is believed to be related to the duration of particle emission [63,64].

It has long been suggested [50,51,63] that a long particleemission duration could result in R_{out} becoming much larger than R_{side} . In the simplest scenario of a static, nonflowing source, the emission time is given by [65]

$$(\beta \Delta \tau_{\text{static}}) = R_{\text{out}}^2 - R_{\text{side}}^2, \qquad (17)$$

where $\beta = \frac{k_T}{m_T}$ is the speed of one of the pions in the source rest frame. For a flowing source such as those created at RHIC, however, Eq. (17) is unreliable [22] as the dimensions of the homogeneity region probed by low-q pion pairs is affected differently in the out and side directions. Indeed, for some sources R_{out} may be smaller than R_{side} [23], in which case Eq. (17) would yield imaginary emission times.

- Rside and Rlong both follow a common universal trend independent of the collision species.
- Regardless of which subset of data is fitted, the heavyion radii do not scale in the same way than the pp ones, in all directions.
- "Universal" scaling of femtoscopic radii with final state multiplicity is violated by the pp data.
- It shows that any scaling law must take into account the initial configuration of the collision.
- The difference may be due to the interactions in the bulk medium formed in heavy ion collisions.

- EOS-I (ideal, massless quark gluon gas) and EOS-H (hadronic gas)
- MC-KLN and MC-GLB correspond to different initial conditions and are more realistic than the earlier results as they allow to incorporate viscous effects

