

OVERVIEW OF FLOW FROM THE RHIC BEAM ENERGY SCAN PROGRAM

Cameron Racz (for STAR Collaboration)

UC Riverside (cracz001@ucr.edu)

RHIC-AGS Annual User's Meeting

August 2, 2023

Office of Science

Importance of Flow Measurements

- Anisotropic flow coefficients $(v_1, v_2, v_3, \text{ etc.})$ describe the response of the medium created after collisions.
- Useful probe to study various characteristics including the initial state, viscosity, equation of state, fluctuations, and particle production.
- Directed Flow (v_1)
 - Deflection of produced particles in the reaction plane.
 - Minimum of dv_1/dy linked to softening of EoS.
- Elliptic Flow (v_2)
 - *Result of pressure gradients caused by the initial shape.*
 - Sensitive to hydrodynamics and viscosity.
- Triangular Flow (v_3)
 - Produced by event-by-event fluctuations in the initial shape.*
 - Sensitive to initial state fluctuations.*

* at high energies

STAR Beam Energy Scan (BES)

■ BES-I

- Collider $\sqrt{s_{NN}} = 7.7 62.4 \ GeV$
- BES-II
 - Collider $\sqrt{s_{NN}} = 7.7 19.6 \ GeV$
 - Fixed Target $\sqrt{s_{NN}} = 3.0 7.7 \ GeV$
- Opportunity to probe the QCD phase diagram through flow observables.
 - Wide range of baryon chemical potentials.
 - Constrain the equation of state below and above the transition.
 - Chance to locate and study the critical point.

K. Meehan, Nuclear Phys. A, 967:808811 (2017)

v_3 at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

- Recent studies by HADES at an energy where hadronic interactions dominate (2.4 GeV) have shown a clear v_3 signal calculated using the first-order event plane (Ψ_1) [1].
 - Can't be created by fluctuations!
- What is the source of this v_3 ?
- What is the driving force?

[1] HADES, Phys. Rev. Lett., 125:262301 (2020)

B. Alver and G.Roland, Phys. Rev.C, 81:054905 (2010)

STAR

 v_3 at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

- $v_3{\Psi_1}$ was measured at 3 GeV with STAR; much weaker signal than 2.4 GeV.
- Signal could only be reproduced with the inclusion of a potential.
- $v_3{\Psi_1}$ could be a useful observable to determine the proper EoS below the phase transition.

STAR

v_2 and v_3 of ϕ meson $\sqrt{s_{NN}} = 19.6 \text{ GeV}$

- The ϕ meson has a low hadronic cross-section; useful tool for studying the initial stages of collisions.
- BES-II reduced v₂ uncertainties by a factor of ~ 3.

STAR

v_2 and v_3 of ϕ meson $\sqrt{s_{NN}} = 19.6 \text{ GeV}$

- The ϕ meson has a low hadronic cross-section; useful tool for studying the initial stages of collisions.
- BES-II reduced v₂ uncertainties by a factor of ~ 2.
- Higher statistics also facilitated new measurements of v_3 for the ϕ .
 - Event-by-event fluctuations in the arrangement of the participants.

v_2 and v_3 of ϕ meson $\sqrt{s_{NN}} = 19.6 \text{ GeV}$

- Comparisons can be made to another recently published STAR paper at $\sqrt{s_{NN}} = 200 \text{ GeV}$ (lower plots).
 - Phys. Rev. C 105, 064911 (2022)
- ϕ meson qualitatively follows the same trends as π, K , and p.

• $v_2 > v_3$

v_2 and v_3 at $\sqrt{s_{NN}} = 14.6, 19.6 \text{ GeV}$

- Flow measurements can give us insight into the production mechanism when we scale it by the number of constituent quarks (NCQ or n_q).
- NCQ scaling supports the coalescence model of hadron production.
- Previous BES-I results show this scaling behavior.
- ϕ mesons measured during BES-I show hints of scaling breaking below $\sqrt{s_{NN}} < 19.6$ GeV with available statistics.

v_2 and v_3 at $\sqrt{s_{NN}} = 14.6, 19.6$ GeV

- BES-II has improved statistical significance for these measurements by a factor of 3.
- At 19.6 GeV, NCQ scaling for v_2 holds within 20% for particles and within 10% for anti-particles.

v_2 and v_3 at $\sqrt{s_{NN}} = 14.6, 19.6$ GeV

- BES-II has improved statistical significance for these measurements by a factor of 3.
- At 19.6 GeV, NCQ scaling for v₂ holds within 20% for particles and within 10% for anti-particles.
- At 19.6 GeV, NCQ scaling for v_3 holds within 30% for particles and within 15% for anti-particles.

Particles

Anti-particles

v_2 and v_3 at $\sqrt{s_{NN}} = 14.6$, 19.6 GeV

- At 14.6 GeV, scaling for v₂ holds within 15% for (multi-)strange hadrons.
- We now have a more precise picture of NCQ scaling, particularly for the ϕ .
 - φ mesons follow NCQ scaling down to 14.6 GeV as opposed to 19.6 as seen before.
 - Similar trends of flow as other hadrons.

Particles

Anti-particles

STAR

v_2 of π , *K*, *p* at $\sqrt{s_{NN}} = 3.0$ GeV

- Contrast: Recently published results from STAR show that NCQ scaling <u>disappears</u> at $\sqrt{s_{NN}} = 3.0$ GeV.
 - <u>Phys. Lett. B 827, 137003</u> (2022)
- This indicates different EOS's between 3 and 14.6 GeV.

v_1 and v_2 of light nuclei at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

v₂ /A

- Furthermore, another STAR publication at 3 GeV showed approximate A-scaling for v₁ of light nuclei, but no scaling for v₂.
 - <u>Phys. Lett. B 827, 136941</u> (2022)
- However, both v_1 and v_2 results are qualitatively reproduced with JAM + coalescence model.

Lines show expectation for deuteron v_2 assuming coalescence.

STAR v_2 of light nuclei $\sqrt{s_{NN}} = 14.6 - 54.4$ GeV

- For deuterons, tritons, and ³He, we have measurements of v_2 at higher energies.
- We see that, with a wide centrality acceptance, these light nuclei only obey nuclear mass number scaling within 20 30%.
- Perhaps the centrality/rapidity selections in previous slides is important for scaling behaviors?
 8/2/23 Cameron Racz RHIC/AGS User's Meeting

- STAR previously published observations of Δv_1 between h^+ and h^- in Cu+Au collisions at $\sqrt{s_{NN}} = 200$ GeV (right image).
 - Phys. Rev. Lett. 118, 012301 (2017)
- v_1 splitting was also reported by ALICE in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
 - Phys. Rev. Lett. 125, 022301 (2020)

v_1 Splitting of Produced Quarks

Index	Quark Mass	Charge	Strangeness	Expression
1	$\Delta m = 0$	$\Delta q=0$	$\Delta S = 0$	$[ar{p}(ar{u}ar{u}ar{d}) + \phi(sar{s})] - [K(ar{u}s) + ar{\Lambda}(ar{u}ar{d}ar{s})]$
2	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^-(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$
3	$\Delta m pprox 0$	$\Delta q = rac{4}{3}$	$\Delta S = 2$	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [ar{\mathcal{K}}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$
4	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	$[\overline{\Omega}^+(ar{sar{s}ar{s}})]-[\Omega^-(ar{sss})]$
5	$\Delta m pprox 0$	$\Delta q = rac{7}{3}$	$\Delta S = 4$	$[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] - [\overline{\mathcal{K}(us)} + \frac{1}{3}\Omega^-(sss)]$

- STAR now has new measurements of v_1 splitting for produced quarks in Au+Au collisions at 27 GeV and 200 GeV.
- Assuming coalescence, combinations of hadrons from produced quarks (table above) were used to investigate the charge and strangeness dependence.
- Current results (right) have shown a dependence on charge and strangeness for splitting.
- Splitting is stronger at 27 GeV, and an AMPT model with no EM field fails to describe the measurements.
- The full study has since been submitted to PRL (arXiv:2304.02831).

v_1 Splitting of Light Hadrons

- In addition, there is a companion paper that reports EM effect measurements for π , *K*, and proton.
 - *arXiv:2304.03430*

- Proton results in peripheral collisions are consistent with observation of the EM field effect.
- Kaons show a similar result to protons.
 - Only K⁺(us̄) affected by transported u quark.
 - Asymmetry of s and \overline{s} production must be considered.
- Pions show a much smaller effect due to transport effects for both π^+ and π^- .
 - Low $\langle p_T \rangle$ and late formation = less transported v_1 and less EM effect.
 - 27 GeV 50 80% centrality statistically significant.

v_1 at Forward and Backward Pseudorapidity

• $v_1(\eta)$ can constrain the shear viscosity of the QCD matter $\left(\frac{\eta}{s}(T,\mu_B)\right)$ [2].

- $v_1(\eta)$ measurements may also give us insight into the baryon stopping mechanism [3].
- BES-II and the Event Plane Detectors give us the opportunity to study $v_1(\eta)$ out to high η .

- At $\sqrt{s_{NN}} = 27$ GeV, $v_1(\eta)$ was calculated from EPD hits with a reference event plane from the TPC to suppress non-flow effects.
- An iterative process is used to account for the STAR materials encountered between the vertex and the EPD wheels.
 - $\sim 50\%$ of particles detected by the EPDs are secondary particles.

STAR v_1 at Forward and Backward Pseudorapidity

- Orange dashed lines show beam rapidity.
- $v_1(\eta)$ changes sign near beam rapidity at all centralities.
- UrQMD (with the event plane or reaction plane) fails to describe the measurements.
 - Future comparison with hydro models will help constrain $\frac{\eta}{s}(T, \mu_B)$ of the medium.

This study can also test limiting fragmentation, where all energies overlap in a region of $\eta - y_{beam}$.

Hypernuclei v_1 at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

 Hyperon-nucleon (Y-N) interactions at high baryon density are important for understanding the EoS for hot dense matter within neutron stars.

STAR

8/2/23

- $\mu_B = 760 \text{ MeV}$ at $\sqrt{s_{NN}} = 3.0 \text{ GeV}.$
- STAR has now measured v_1 for Λ , ${}^{3}_{\Lambda}$ H (2-body and 3-body decays) and ${}^{4}_{\Lambda}$ H.
- 8400 $^{3}_{\Lambda}$ H and 5200 $^{4}_{\Lambda}$ H identified in 5 40% centrality.

Particle	$p_T \; (\text{GeV}/c)$	у
Λ, p	(0.4, 0.8)	(-1.0, 0.0)
d	(0.8, 1.6)	(-1.0, 0.0)
$^{3}_{\Lambda}$ H	(1.0, 2.5)	(-1.0, 0.0)
<i>t</i> , ³ He	(1.2, 2.4)	(-1.0, -0.1)
$^4_{\Lambda}{ m H}$	(1.2, 3.0)	(1002)
⁴ He	(1.6, 3.2)	(-1.0, -0.2)

Hypernuclei v_1 at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

• Hypernuclei v_1 follows similar trends as the light nuclei with the same mass number.

- The v_1 slopes from hypernuclei are lower than light nuclei, but the slope of the mass dependence is similar (fits on the right)
 - Light nuclei:
 0.3323 ± 0.0003
 - Hypernuclei: 0.27 <u>+</u> 0.04

- This analysis contributes unique and important results for Y-N interactions that can be considered alongside other recent publications:
 - Λ *p* elastic scattering <u>Phys. Rev. Lett. 127, 272303 (2021)</u>
 - $\Sigma^- p$ elastic scattering <u>Phys. Rev. C 104, 045204 (2021)</u>
 - $\Sigma^- p \rightarrow \Lambda n \ reaction \ \underline{Phys. Rev. Lett. 128, 072501 (2022)}$

Summary

- Recent analyses from the BES program have given us many important results of v_1 , v_2 , and v_3 .
- v_3 is present at 3.0 GeV, but no longer produced by initial state fluctuations.
 - Correlated to Ψ_1 and requires a potential in the EoS.
- Higher statistics BES-II measurements of v_2 and v_3 for the ϕ meson presented.
 - Flow follows similar trends to that of other particles.
- NCQ scaling has been tested at 14.6 and 19.6 GeV.
 - Observed to be valid down to 14.6 GeV with BES-II.
 - Scaling with v_3 has been presented at 19.6 GeV.
 - The point where the ϕ stops scaling is now constrained to $\sqrt{s_{NN}} < 14.6$ GeV.
 - Clear difference in the EoS between 3 GeV and 14.6 GeV.

Summary

- With BES-I and BES-II, we have compiled measurements of p, d, t, and ³He v_2/A .
 - A-scaling rule doesn't seem as clear as other NCQ scaling results shown.
 - Results overall consistent with light nuclei coalescence.
- v_1 splitting has been investigated at 27 GeV Au+Au and 200 GeV Au+Au, Ru+Ru, and Zr+Zr.
 - Results suggest a strong EM field that drives h^+ and h^- in opposite directions.
- The EPDs have been used to study v_1 at high η .
 - Useful for shear viscosity, baryon stopping, and limiting fragmentation.
- Hypernuclei v_1 for ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H has been measured and published for the first time.
 - Valuable information contributed to the study of the hot dense nuclear matter *EoS*.

Considerations for the Future

- Where does the Ψ_1 correlated v_3 end and the fluctuation driven v_3 begin?
- Can we get more information out of the ϕ where it deviates from NCQ scaling?
- Where (in y, p_T , centrality) does coalescence dominate the production process for light nuclei?
- What does fragmentation look like in various flow measurements?
- How do hypernuclei behave with respect to v_2 or v_3 ? Is it always the same as light nuclei?
- Since we have a large scan of energies at our disposal, and more currently undergoing production, how do any of these observables look at other energies?
- Thank you, and we will see you at Quark Matter 2023!