Overview of Chiral Magnetic Effect from RHIC Beam Energy Scan program

Zhiwan Xu
University of California, Los Angeles
Aug 2, 2023

Thanks to the STAR CME focus group and many collaborators for discussions and insights!
Chiral Magnetic Effect

- QCD vacuum transition leads to nonzero topological charge.
- Chirality imbalance of quarks coupled with strong magnetic field induces an electric charge separation along the B field direction (violates local Parity Symmetry and CP Symmetry!)

\[\vec{J} = \frac{e^2}{2\pi^2} \mu_5 \vec{B} \]

Kharzeev, Pisarski, Tytgat, PRL 81(1998) 512
Voloshin, PRC 70 (2004) 057901
CME Observables

- Common observables:
 - γ_{112} correlator
 - R correlator
 - Signed balance functions

Core components of them are equivalent. Here we focus on:

$\gamma_{112} = \langle \cos(\phi_1 + \phi_2 - 2\psi_{RP}) \rangle = \langle v_1v_1 \rangle - \langle a_1a_1 \rangle + \text{BG}(v_2^c)$

CME signal: $\Delta \gamma^\text{CME} = \gamma^\text{OS} - \gamma^\text{SS} > 0$

Parity Odd, can not directly observe

Parity Even, sensitive to charge separation

Variants of γ_{112}: To suppress κ_{112} correlator

$\delta = \langle \cos(\phi_1 - \phi_2) \rangle$

$H^k = (k v_2 \delta - \gamma) / (1 + k v_2) \quad k = 1, 1.5 \ldots$

Non-CME

Flowing resonance decay

More Methods:
- Participant Plane vs Spectator Plane,
 Covariance between variables,
 Event Shape Selection (Engineering), M_{inv} …
Why search CME in Beam Energy Scan?

- At LHC energies, Δy^{112} could be explained by v_2 related BKG.
- ESE based on variables excluding POI is unstable.
- We should focus on lower energy. Advantage: longer lasting B.
- Possible to see the turn-off effect near 7.7 GeV (where QGP is about to vanish!)
Beam Energy Scan at RHIC

BES-I

<table>
<thead>
<tr>
<th>√sNN (GeV)</th>
<th>Events (10^6)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.4</td>
<td>46</td>
<td>2010</td>
</tr>
<tr>
<td>39</td>
<td>86</td>
<td>2010</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
<td>2011</td>
</tr>
<tr>
<td>19.6</td>
<td>15</td>
<td>2011</td>
</tr>
<tr>
<td>14.6</td>
<td>13</td>
<td>2011</td>
</tr>
<tr>
<td>11.5</td>
<td>7</td>
<td>2010</td>
</tr>
<tr>
<td>9.2</td>
<td>0.3</td>
<td>2008</td>
</tr>
<tr>
<td>7.7</td>
<td>4</td>
<td>2010</td>
</tr>
</tbody>
</table>

Statistics:
- 20 times higher

BES-II

<table>
<thead>
<tr>
<th>√sNN (GeV)</th>
<th>Events (10^6)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>560</td>
<td>2018</td>
</tr>
<tr>
<td>19.6</td>
<td>538</td>
<td>2019</td>
</tr>
<tr>
<td>14.5</td>
<td>325</td>
<td>2019</td>
</tr>
<tr>
<td>11.5</td>
<td>230</td>
<td>2020</td>
</tr>
<tr>
<td>9.2</td>
<td>160</td>
<td>2020</td>
</tr>
<tr>
<td>7.7</td>
<td>100</td>
<td>2021</td>
</tr>
</tbody>
</table>

Publication on CME
- BES-I: STAR, PRL 113 (2014) 052302
- BES-II: STAR, PLB 839 (2023) 137779

Detector Upgrades:
- 2018 EPD: high EP resolution into spectator region (2.1<η<5.1)
- 2019 iTPC: wider acceptance
Beam Energy Scan I

- Common BKG in γ^{OS} and γ^{SS} could be subtracted by $\Delta \gamma$
- In mid-central collisions, a finite charge separation is observed.
- However, $\Delta \gamma^{112}$ contains BKG contribution related to flow and nonflow.
Beam Energy Scan I

$H^k = (k v^2 \delta - \gamma) / (1 + k v^2)$ \(k = 1, 1.5 \ldots \)

- ΔH disappears at the lowest and highest energies.
- The vanishing ΔH at 7.7 GeV indicates the domination of hadronic interactions over partonic ones.
- The B field may decay too fast at 2.76 TeV.

- Mid-central collisions are preferred.
 - B field stronger than central events
 - More robust against nonflow $\sim 1/N$
Normalized observable κ^{112} allows better comparison between data and pure BKG model.

- κ^{112} at highest and lowest energies are consistent with BKG prediction from AMPT.
- Nonflow in peripheral region may cause the enhancement of κ^{112}.
The Lesson and Challenge from BES-I

In BES-I, we learned:

- Using participant plane (TPC) entails large nonflow BKG (can be avoided with Ψ_1)
- Much Larger statistics needed!
- The large v_2-BKG requires better methods.

Lesson from Recent Isobar Data:

Fraction of CME signal is not as large as expected in smaller system: larger nuclei fluctuation and smaller B field; in higher energy: shorter B life time.

BES-II provides unique opportunity to search for the CME!

In BES-II

- ✔ EPD (2.1<\eta<5.1) covers spectator range
- ✔ x20 statistics
- ✔ New methods being developed

<table>
<thead>
<tr>
<th>Beam rapidity</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>3.36</td>
</tr>
<tr>
<td>19.6</td>
<td>3.04</td>
</tr>
<tr>
<td>14.5</td>
<td>2.75</td>
</tr>
<tr>
<td>11.5</td>
<td>2.51</td>
</tr>
<tr>
<td>9.2</td>
<td>2.28</td>
</tr>
<tr>
<td>7.7</td>
<td>2.11</td>
</tr>
</tbody>
</table>
Beam Energy Scan II - P.P. vs S.P.

Assumption: In a pure-BKG scenario driven by flow

$$\frac{\Delta \gamma (\Psi_{1,SP})}{v_2} = \frac{\Delta \gamma (\Psi_{2,pp})}{v_2} = \frac{\Delta \gamma (\Psi_{2,|\eta|<1})}{v_2}$$

$$R(\Psi_n) = \frac{\Delta \gamma (\Psi_n)}{v_2(\Psi_n)} \times N_{\text{part}}$$

would be unity

Double ratio is consistent with unity for 10-50%.

Flow decorrelation is a significant uncertainty yet to be understood in this approach.
Assumption: Λ and $\bar{\Lambda}$ hyperon global polarization is split by strong B field

$$P(\Lambda) \approx \frac{\omega}{2T} + \frac{\mu_\Lambda}{T} B$$

$$P(\bar{\Lambda}) \approx \frac{\omega}{2T} - \frac{\mu_\bar{\Lambda}}{T} B$$

$$\Rightarrow \Delta P \propto B$$

Parity-even

$$\text{Cov}(\Delta P, \Delta \gamma^{112})$$ sensitive to B field, should be < 0

Limited by statistics, we are unable to use covariance to reach the required sensitivity.

At the hyperon formation time, the magnetic field may be much smaller than expected.
Assumption: Event by Event chirality (handness) fluctuation impacts the following covariance:

\[
\Delta n = \frac{n_L - n_R}{n_L + n_R} \quad ; \quad \Delta a_1 = a_1^+ - a_1^- \quad \text{parity-odd}
\]

\[
\operatorname{Cov}(X, Y) = \langle XY \rangle - \langle X \rangle \langle Y \rangle
\]

\[
\operatorname{Cov} (\Delta n, \Delta a_1) \text{ sensitive to chirality fluctuations } < 0
\]

Both covariance method, even if they entail true signal, can not reach the statistical precision needed for observation.
Beam Energy Scan II - Event Shape Selection

Assumption:

$$\Delta \gamma^{112} = \Delta \gamma^\text{CME} + k \frac{v_2}{N} + \Delta \gamma^\text{non-flow}$$

Measured Signal

Backgrounds

Flow vector $$q_2^2 = \frac{(\sum \sin 2\phi)^2 + (\sum \cos 2\phi)^2}{N(1 + Nv_2^2)}$$ (event binning) or $$v_2$$ (BKG control) has contributions from:

- participant shape distribution – likely long range and correlated over large $$\eta$$ gaps
- emission pattern fluctuations – short range, uncorrelated for different $$\eta$$ regions

Geometric Variation

Emission pattern fluctuation

Flow vector has contributions from:

- single $$q_2$$
- pair $$q_2$$
- single $$v_2$$
- pair $$v_2$$

Pair information used

27 GeV Au+Au (run18)

STAR preliminary

Centrality: 30 - 40%

Intercept = $$(1.8 \pm 0.3) \times 10^{-4}$$
Beam Energy Scan II - Event Shape Selection

More coming soon:

- Event shape variables
 - single q^2
 - pair q^2
- Elliptic flow variables
 - single v_2
 - pair v_2

○ From AVFD study, we settled the optimal ESS recipe (c) that can accurately match the input true CME signal.
○ ESS recipe (a) and (b) under-subtract the BKG.
○ Recipe (d) over-subtracts the BKG.

c - arXiv:2307.14997
Beam Energy Scan II - Event Shape Selection

- Spectator plane Ψ_1 is more correlated to the magnetic field direction.
- ESS (a) and (b) present finite $\Delta \gamma_{ESS}^{112}$ in mid central events with effectively more than 70% of v_2 BKG removed.
- The precision of STAR measurement after ESS is controlled to be 5.4% (3.6%) of ensembled average $\Delta \gamma^{112}$ at BES-II 27 (19.6) GeV.
- We will report the new findings of BES-II result (7.7 to 27 GeV) in the upcoming QM2023.
Summary

- The search for the CME addresses an intrinsic topological property of QCD.
- We have learned many new insight for the v_2-related BKG in the CME observables
 - H-correlator, κ^{112}, double ratio of S.P./P.P, and inter-observable covariance.
- We have developed new Event Shape Selection utilizing pair information to select events, and single v_2 to control BKG.
- New BES-II Δy measurements will be presented in QM2023.
Thank you!