Thermal Dileptons with Beam Energy Scan Program at RHIC

Zaochen Ye (Rice University)

QCD Phase Diagram and RHIC Beam Energy Scan

- Determine QCD phase diagram via high energy heavy-ion collisions.
- Formation of QGP
- Crossover at μ_B close to 0
- 1st-order phase transition
- Critical point

QCD Phase Diagram and RHIC Beam Energy Scan

- Determine QCD phase diagram via high energy heavy-ion collisions.
- Formation of QGP
- Crossover at μ_B close to 0
- 1st-order phase transition at high μ_B
- Critical point
- Beam Energy Scan program at RHIC:
 - Vary initial T and μ_{B}
 - Explore different reaction trajectories cross phase boundary

STAR White Paper 2014

T at early stage is still poorly known

T at early stage is still poorly known

Thermal dileptons can direct access the hot QCD medium at both QGP phase and hadronic phase

How to Measure Thermal Dileptons?

How to Measure Thermal Dileptons?

Physical background can be determined using the well-established cocktail simulation techniques

Examples of Data vs. Cocktail

low mass region (LMR) and intermediate mass region (IMR)

Dileptons as a Thermometer of Hot Medium

How thermal dileptons distribute their invariant mass will reveal the temperature of their emission source

LM Thermal Dilepton

In-medium p dominated

Similar mass spectrum

Similar temperature

LM Thermal Dilepton

In-medium p dominated

Similar mass spectrum

Similar temperature

In medium ρ is produced from a "similar hot bath" in 27/54.4 GeV Au+Au and 17.3 GeV In+In

[1]: Hans J. Specht, AIP Conf. Prcd 1322, 1 (2010)[2]: Private comm. with Berndt Muller22

Summary of Temperatures

Summary of Temperatures

Summary of Temperatures

Incoming Dielectrons with BES-II and FXT Large datasets with iTPC upgrade ~10 × BES-I

Exciting new results are coming soon:

- Temperature measurements towards lower energy collisions (higher μ_B)
- Search for non-trivial enhanced thermal dilepton yield → a potential critical point

THANKS

BACKUP SLIDES

LM Thermal Dilepton at Low Energy Collisions

- High baryon density, $\mu_B \sim 700-900$ MeV
- In-medium ρ melt via frequent scattering with surrounding baryons
- T_{LMR} ~ 70-80 MeV, much lower than that at RHIC and SPS

Chiral Symmetry Restoration

Rapp and Hohler: PLB 731 (2014) 103-109

Measure a₁ theoretically

- Utilizing in-medium Weinberg sum rules to relate a₁ and ρ spectral function
- ρ spectral function and T dependent order parameters describing RHIC/SPS data as input
- Observe how does a₁ spectral function behave under finite temperatures

Experimental evidence is needed for final answer!

a₁ is **theoretically observed** to be merged with ρ in hot medium \rightarrow chiral symmetry is restored

Recent Direct Photon Measurements

- Extracted T_{eff} is larger at a higher p_T region
- Universal scaling of production yield with $dN_{ch}/d\eta$

Data vs. Model

Rapp model: PRC 63 (2001) 054907, Adv HEP 2013 (2013) 148253, PLB 753 (2016) 586 PHSD model: NPA 807, 214 (2008); NPA 619, 413 (1997) PRC 97, 064907 (2018)

Both models can **well describe the ρ broadening at LMR**

Rapp model: macroscopic many-body approach medium described by cylindrical expanding fireball with IQCD EoS; in-medium ρ -propagator; resonance + π cloud + baryons

PHSD model: microscopic transport approach medium described by Dynamical Quasi-Particle Model (DQPM); microscopic partonic or hadronic scattering; collisional broadening

Data vs. Model

Rapp model: PRC 63 (2001) 054907, Adv HEP 2013 (2013) 148253, PLB 753 (2016) 586 PHSD model: NPA 807, 214 (2008); NPA 619, 413 (1997) PRC 97, 064907 (2018) Both models can well describe the ρ broadening at LMR but underestimate the IMR \rightarrow QGP is hotter than model expectation

Rapp model: macroscopic many-body approach medium described by cylindrical expanding fireball with IQCD EoS; in-medium ρ -propagator; resonance + π cloud + baryons

PHSD model: microscopic transport approach medium described by Dynamical Quasi-Particle Model (DQPM); microscopic partonic or hadronic scattering; collisional broadening