

Overview of Net-particle Fluctuations from the RHIC Beam Energy Scan Program

Zachary Sweger University of California, Davis For the STAR Collaboration

Supported in part by

Zachary Sweger

10/28/2022

RHIC/AGS Users Meeting

Phases of QCD Matter

QCD Phase Diagram

- Cross-over transition expected at low baryon chemical potential (μ_B)
- First-order transition expected at high μ_{B}
- Critical point marks the location where the transition order changes

Phases of QCD Matter

QCD Phase Diagram

- Cross-over transition expected at low baryon chemical potential (μ_B)
- First-order transition expected at high μ_{B}
- Critical point marks the location where the transition order changes

Beam Energy Scan (BES)

- BES program at the Relativistic Heavy-Ion Collider scans phase space of QCD matter by colliding gold ions at varying energies
- Seeking to map onset of deconfinement, and the predicted QCD critical point

BES-II Collider Program

- Several detector upgrades following BES-I
- Endcap TOF (ETOF) extends particle identification to forward rapidity
- Inner TPC (iTPC) also extends acceptance in pT and from $|\eta| < 1$ to $|\eta| < 1.5$ and improves tracking
- Now have data at $\sqrt{s_{NN}}$ = 7.7, 9.2, 11.5, 14.5, 19.6, and 27 GeV

Fixed-Target Program for BES-II

Fixed-Target (FXT) Program at STAR

- Test run with gold target in 2015
- First physics runs at $\sqrt{s_{NN}}$ = 3.0 GeV and 7.2 GeV in 2018
- Now have data at $\sqrt{s_{NN}}$ of 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, and 7.7 GeV

Challenges for FXT

- Shifting asymmetric acceptance wrt midrapidity
- At 7.7 GeV midrapidity moves to edge of acceptance
- Boost at higher energies shifts PID to rely more on TOF than TPC identification
- ETOF is critical for PID above 3.2 GeV!

Endcap Time-of-Flight Detector

ETOF Details

- CBM-TOF group provided ETOF system
- Provides particle identification over 1.55<η<2.2
- Collected data for the Fixed-Target Program
- Calibrations still in progress.

Net-particle Fluctuations

Cumulants and Moments

The standardized moments of a distribution are

 $S\sigma=C_3/C_2$ measure of distribution's asymmetry $\kappa\sigma^2=C_4/C_2$ measure of distribution's tails

X. Luo, N. Xu, Nucl Sci Tech (2017) 28:112. DOI: 10.1007/s41365-017-0257-0

BES-I Protons

• In BES-I, STAR measured net-proton number distributions from $\sqrt{s_{NN}}$ of 7.7 to 200 GeV

STAR 🛧

BES-I Protons

• From these distributions, STAR measured cumulants C₁-C₄ and their ratios

STAR Physical Review Letters 126 (2021) 092301; arXiv:2001.02852v3

STAR 🖈

Current Status of Cumulants Analysis

- Non-monotonic energy dependence was observed in BES-I data with a 3.1 sigma significance.
- High-statistics data (BES-II collider mode) with detector improvements have been taken from 7.7 GeV to 27 GeV.
- Data have been collected to fill the large gap between 3.0 and 7.7 GeV.

Current Status of Cumulants Analysis

- Non-monotonic energy dependence was observed in BES-I data with a 3.1 sigma significance
- High-statistics data (BES-II collider mode) with detector improvements have been taken from 7.7 GeV to 27 GeV.
- Data have been collected to fill the large gap between 3.0 and 7.7 GeV.

Current Status of Cumulants Analysis

- Non-monotonic energy dependence was observed in BES-I data with a 3.1 sigma significance.
- High-statistics data (BES-II collider mode) with detector improvements have been taken from 7.7 GeV to 27 GeV.
- Data have been collected to fill the large gap between 3.0 and 7.7 GeV.

Highlights from Recent Publications

Highlights: Proton Cumulants at 3.0 GeV

STAR, Phys. Rev. Lett. 128, 202303 (2022) ; arXiv : 2209.11940. Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

- In 2022, FXT 3 GeV cumulants were published up to C₄.
- This was first FXT proton moments analysis
- Used asymmetric acceptance window -0.5<y-y_{cm}<0

STAR, Phys. Rev. Lett. 128, 202303 (2022) ; arXiv : 2209.11940. Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

- In 2022, FXT 3 GeV cumulants were published up to C₄.
- This was first FXT proton moments analysis
- Used asymmetric acceptance window -0.5<y-y_{cm}<0

C₄/C₂ at 3 GeV added to energy scan

STAR, Phys. Rev. Lett. 128, 202303 (2022) ; arXiv : 2209.11940. Phys. Rev. Lett. 126, 092301 (2021); Phys. Rev. C 104, 024902 (2021)

Highlights: Proton Higher-Order Cumulants at 3.0 GeV

This year the 3 GeV cumulants up to

Number of Participating Nucleons N

part

STAR, Phys. Rev. C 107, 024908 (2023)

Highlights: Proton Higher-Order Cumulants at 3.0 GeV

- This year the 3 GeV cumulants up to C₆ and their ratios were published
- Paper included discussion and simulations of initial volume fluctuations (IVF)
- Most central cumulants were consistent with UrQMD

STAR, Phys. Rev. C 107, 024908 (2023)

Highlights: Proton Higher-Order Cumulants at 3.0 GeV

- This year the 3 GeV cumulants up to C₆ and their ratios were published
- Paper included discussion and simulations of initial volume fluctuations (IVF)
- Most central cumulants were consistent with UrQMD
- It is crucial to understand IVF in FXT

STAR, Phys. Rev. C 107, 024908 (2023)

Highlights: Energy Scan of Net-Proton Higher Cumulants

• This year STAR published higher-order cumulants up to C₆ for 0-40% and 50-60% centrality from BES-I data from $\sqrt{S_{NN}}$ of 7.7 to 200 GeV and FXT data at $\sqrt{s_{NN}}$ = 3 GeV

Highlights: Energy Scan of Net-Proton Higher Cumulants

- These higher-order cumulants allow us to compare the hierarchy of different orders
- LQCD predicts $C_3/C_1 > C_4/C_2 > C_5/C_1 > C_6/C_2$
- This holds (within uncertainties) at each energy except 3 GeV!
- 3 GeV shows reverse ordering which is predicted by UrQMD suggesting hadronic interactions

Highlights: Deuteron Cumulants

 This year STAR also posted to arXiv an energy scan of the deuteron-number cumulants up to C₄ and their ratios

- This year STAR also posted to arXiv an energy scan of the deuteron-number cumulants up to C₄ and their ratios
- It had previously been thought that the deuteron cumulant ratios could distinguish between thermal deuteron production and production by coalescence
- The results were consistent with both Canonical Ensemble thermal model predictions and with the latest coalescence model of formation

• In 2019 STAR published a beam-energy scan ($\sqrt{s_{NN}}$ =7.7-200 GeV) of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon distributions in Au+Au collisions

- In 2019 STAR published a beam-energy scan ($\sqrt{s_{NN}}$ =7.7-200 GeV) of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon distributions in Au+Au collisions
- Like net-baryon number, net-charge and net-strangeness (netkaon) cumulants expected to be sensitive to critical point

- In 2019 STAR published a beam-energy scan ($\sqrt{s_{NN}}$ =7.7-200 GeV) of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon distributions in Au+Au collisions
- Like net-baryon number, net-charge and net-strangeness (netkaon) cumulants expected to be sensitive to critical point
- Previous STAR measurements focused on diagonal cumulants

- In 2019 STAR published a beam-energy scan (√s_{NN}=7.7-200 GeV) of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon distributions in Au+Au collisions
- Like net-baryon number, net-charge and net-strangeness (netkaon) cumulants expected to be sensitive to critical point
- Previous STAR measurements focused on diagonal cumulants
- Off-diagonal cumulants sensitive to off-diagonal thermodynamic susceptibilities relating correlations of conserved charges

- In 2019 STAR published a beam-energy scan (√s_{NN}=7.7-200 GeV) of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon distributions in Au+Au collisions
- Like net-baryon number, net-charge and net-strangeness (netkaon) cumulants expected to be sensitive to critical point
- Previous STAR measurements focused on diagonal cumulants
- Off-diagonal cumulants sensitive to off-diagonal thermodynamic susceptibilities relating correlations of conserved charges
- Off-diagonal thermodynamic susceptibilities expected to have abrupt change with deconfinement onset

- In 2019 STAR published a beam-energy scan ($\sqrt{s_{NN}}$ =7.7-200 GeV) of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon distributions in Au+Au collisions
- Like net-baryon number, net-charge and net-strangeness (netkaon) cumulants expected to be sensitive to critical point
- Previous STAR measurements focused on diagonal cumulants
- Off-diagonal cumulants sensitive to off-diagonal thermodynamic susceptibilities relating correlations of conserved charges
- Off-diagonal thermodynamic susceptibilities expected to have abrupt change with deconfinement onset
- Conclusion: Cumulant ratios show no strong centrality/energy dependence. Results consistent with UrQMD simulations

'AR ☆

Upcoming Results

Data from the Fixed-Target Program

Nominal √s (GeV)	Chemical Potential µ _B	Year	Number of Good events	Precise Y _{cm}	Status of Production	ETOF Calibration Status	Efficiency Calibration Status	Bad Runs Analysis
3.2	0.70	2019	200.6M	1.139	Produced	Not needed	Completed	Completed
3.5	0.67	2020	115.6M	1.254	Reproduction pending	Completed	Pending	Completed
3.9	0.63	2020	117M	1.375	Reproduction pending	Completed	Pending	Completed
4.5	0.59	2020	108M	1.522	Produced	Pending	Pending	Completed
5.2	0.54	2020	103M	1.683	Produced	Pending	Pending	Completed
6.2	0.49	2020	118M	1.867	Produced	Pending	Pending	Completed
7.2	0.44	2020	316.9M	2.021	Not yet Produced	Pending	Pending	Pending
7.7	0.42	2020	112.5M	2.102	Reproduction pending	Completed	Pending	Completed

Data from BES-II Collider Program

Nominal √s (GeV)	Chemical Potential µ _B	Year	Number of Good events	Precise y _{cm}	Status of Production	ETOF Calibration Status	Efficiency Calibration Status	Bad Runs Analysis
7.7	0.42	2021	101M	0	Produced	Not needed	Completed	Pending
9.2	0.37	2020	162M	0	Produced	Not needed	Pending	Pending
11.5	0.32	2020	235M	0	Produced	Not needed	Pending	Pending
14.6	0.26	2019	324M	0	Produced	Not needed	Completed	Completed
19.6	0.21	2019	478M	0	Produced	Not needed	Completed	Completed
27	0.16	2018	555M	0	Produced	Not needed	Completed	Completed

FXT Proton Moments: Detector Acceptances

- At low momenta and low rapidities, the time-projection chamber is used to identify protons
- Pion contamination starts to become significant as momentum increases.

FXT Proton Moments: Detector Acceptances

STAR 🖈

 At high momenta and low rapidities, the barrel TOF provides better proton ID, but at lower efficiency

FXT Proton Moments: Detector Acceptances

 At high momenta and high rapidities, the endcap TOF provides good resolution, with lower efficiency. STAR 🛧

Important Check: FXT & Collider Overlap at 7.7 GeV

• This will not be a standard fluctuation analysis window, and will not be a part of the cumulant energy scan, but is important for building confidence in comparisons between the fixed-target program and collider results

STAR 🖈

Important Check: FXT & Collider Overlap at 7.7 GeV

• This will not be a standard fluctuation analysis window, and will not be a part of the cumulant energy scan, but is important for building confidence in comparisons between the fixed-target program and collider results

STAR 🖈

Lessons from BES-II and FXT

Using TOF for PID

- The Fixed-Target Program, relies on TOF much more than collider analyses
- This has meant that we need to intimately understand the TOF
- Luckily TPC and TOF acceptances overlap, so we can check that the TPC and TOF results agree in certain regions

The question: what does pileup look like to the TOF?

- If a second collision happens slightly after the first, the pileup particles will have incorrect timing information and cannot be identified by their mass
- So the precision timing of the TOF means that the extra protons from a pileup event will not be detected by the TOF, while the charged particle multiplicity is measured by TPC including pileup events.
- This is great!

The question: what does pileup look like to the TOF?

- If a second collision happens slightly after the first, the pileup particles will have incorrect timing information and cannot be identified by their mass
- So the precision timing of the TOF means that the extra protons from a pileup event will not be detected by the TOF, while the charged particle multiplicity is measured by TPC including pileup events.
- This is great! terrible

Lessons: FXT and Timing Fluctuations

- The TPC still identifies all of the pileup tracks
- We then determine the centrality by the TPC multiplicity
- So a pileup event may be classified as very central, but have few protons

- The TPC still identifies all of the pileup tracks
- We then determine the centrality by the TPC multiplicity
- So a pileup event may be classified as very central, but have few protons
- For each centrality bin, this leads to a long low-proton-number tail

- The TPC still identifies all of the pileup tracks
- We then determine the centrality by the TPC multiplicity

Single Events Single+pileup

- So a pileup event may be classified as very central, but have few protons
- For each centrality bin, this leads to a long low-proton-number tail
- Long tails mean large kurtosis

Proton number (TPC+TOF)

0-5% centrality

(TPC)

proton number

peripheral event

corresponding to more

Counts

D, 3

N. 0

W. -1

U. -1.

3

C, -0.59376

- The TPC still identifies all of the pileup tracks
- We then determine the centrality by the TPC multiplicity
- So a pileup event may be classified as very central, but have few protons
- For each centrality bin, this leads to a long low-proton-number tail
- Long tails mean large kurtosis

The PID difference between analyzed protons (TPC+TOF) and centrality definition (TPC) leads to few protons for pileup events classified as very central events

PDFs with varying kurtosis values

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-5

-3

-4

-2 -1 0

1

- We can simulate this in UrQMD
- Simulate pileup by sampling two events at a rate of 0.0001
- In the experiment we use TOF PID for tracks above a certain momentum
- The more TOF PID we use, the more the pileup causes a tail

- We can simulate this in UrQMD
- Simulate pileup by sampling two events at a rate of 0.0001
- In the experiment we use TOF PID for tracks above a certain momentum
- The more TOF PID we use, the more the pileup causes a tail
- This causes instability in C_4/C_2 and other cumulants

Conclusions from this study

- Differences in TOF and TPC timing precision can cause fluctuations
- When using TOF for PID, pileup may have a larger effect on cumulants than previously understood
- It is best to remove pileup, NOT correct for it

UrQMD

- STAR's tracking algorithm uses tracks to identify a vertex
- Each track is then assigned a "distance of closest approach" (DCA) to the vertex
- We only want primary particles, so we take tracks with DCA<1cm
- If, in some small number of events, the vertexing algorithm fails, then those events will have an oddly-low number of protons
- This can also lead to a low-proton-number tail

https://www.bnl.gov/newsroom/news.php?a=214492

- These events are identifiable by their distinct DCA distribution
- We can find these by looking event-by-event at the average DCA in the x, y, and z directions
- By rejecting outliers as bad events, we can minimize the effect of this vertexing issue on fluctuations analyses

What We've Learned

- Data taken in BES-I shows non-monotonic behavior of net-proton cumulant ratios which suggests proximity to the critical point.
- STAR has published net-proton high-order cumulants up to C₆ at $\sqrt{s_{NN}}$ = 3 GeV and between 7.7 and 200 GeV
- Newly-published deuteron cumulants agree with both thermal and coalescence models

Outlook

- Recent data from the Fixed–Target Program will extend our knowledge of the (net-)proton cumulants at low energies (3.2-7.7 GeV)
- The BES-II Collider Program is providing high-statistics data between 7.7 and 27 GeV
- We are working to understand the unique challenges associated with fluctuations analyses
- BES-II and FXT analyses are in progress