The Role of Femtoscopy in Constraining the Eq. of State of High-Baryon-Density Matter

Scott Pratt Department of Physics & Astronomy, Facility for Rare Isotope Beams Michigan State University

Femtoscopy Theory (one slide)

"SOURCE FUNCTION" measures phase space cloud, not source!!!

GOAL: Measure $C(\vec{p}_1, \vec{p}_2)$ to infer $S(\vec{v}_{cm}, \vec{r})$ For identical bosons: $|\phi|^2 = 1 + \cos(2\vec{q} \cdot \vec{r})$ Strong/Coulomb makes inversion more complicated

Basic Idea

2.00

S.P. Phys. Rev. D (1986) Two-Pion Correlation Function

2.00

Phase Transition at Low Energy

neutron-neutron correlations at 25A MeV and 58A MeV

Sensitivity to EoS (realistic calc.s)

Role of Femtoscopy in Global Analysis

E.Sangaline & S.P, PRC 2016

A.Sorensen et al., nucl-th2301.13253

Evidence of EoS Stiffening & Softening from v_1, v_2

 v_1 rises and falls with beam energy

Bayesian Analysis of v_1, v_2

Calculations has some questions:
momentum dependence of potential
role of string/flux-tubes on v₁

S.Altiparmak, C.Ecker, L.Rezzola, Ast.J.Lett. (2022)

Neutron Stars

Evidence of stiffness for $\rho \sim 3\rho_0$ from neutron star observations $- c_s^2$ higher for neutron-rich matter

Source Radii vs Beam Energy

REMARKABLE! Lowering beam energy below 19.6 GeV yields higher speed of sound despite higher p/π ratio!

UrQMD vs STAR/HADES

Where to go from here...

Which Beam Energies?

Lower BES (FXT) energies and HADES energies $\bullet explore up to ~\lesssim 3\rho_0$ without becoming QGP $\bullet can then avoid hydro$

Isospin degree of freedom

- crucial for astrophysical correction
- •FRIB 400 program?

What to Measure emphasis on sensitivity to EoS

Rlong

- 1. Pions
 - tilt and azimuthal sensitivity
 - away from mid-rapidity (important at lower energy)
- Protons & Kaons

 also good shape sensitivity
- 3. Non-identical particles – $S(\vec{r})$ not reflection symmetric

What to Calculate emphasis on sensitivity to EoS

READY TO GO:

- 1. CoRAL (Correlations Analysis Library)
 - Calculates 3D Correlations
 - Wide variety of species pairs
 - Need only provide OSCAR output
 - Not turnkey, but easily adaptable
- 2. Emulation software for Bayesian Analysis
 - Smooth Emulator
 (developed at MSU for BAND Collab.)
 - Initial state parameters, EoS, viscosity need to be simultaneously analyzed

<u>TO DO:</u>

- **1. Improve Transport Theory**
 - Momentum dependence
 - Initial stopping
 - Parameterize possibilities for Bayesian analysis
- 2. Improve data/model comparisons
 - Extracting Gaussian radii for *pp...*
 - Compare angular decompositions?

What to take away from this talk

- I. The physics of high-baryon density in hadron phase is fundamentally interesting
 - Eq. of state
 - Astrophysical connection
- **II.** Femtoscopy will play large role in that effort!