

Experimental constraints on the initial stages of A+A collisions at lower energy

Niseem Magdy Abdelrahman Stony Brook University

<u>niseemm@gmail.com</u> Inspire-hep: <u>1305036</u> ORCID: <u>0000-0002-6458-6552</u> In part supported by

Initial condition and emergence of collectivity

The anisotropic flow (collectivity) measurements are sensitive to the QGP transport properties.

The flow harmonic coefficients v_n are influenced by eccentricities (ε_n), fluctuations, system size, speed of sound $c_s(\mu_B, T)$, and transport coefficient $\frac{\eta}{s}(\mu_B, T)$

The flow harmonic coefficients v_n are influenced by eccentricities (ε_n), fluctuations, system size, speed of sound $c_s(\mu_B, T)$, and transport coefficient $\frac{\eta}{s}(\mu_B, T)$

> What is the nature of the flow fluctuation?

The flow harmonic coefficients v_n are influenced by eccentricities (ε_n), fluctuations, system size, speed of sound $c_s(\mu_B, T)$, and transport coefficient $\frac{\eta}{s}(\mu_B, T)$

- > What is the nature of the flow fluctuation?
- > What is the space-time evolution of the produced matter? • How are (ε_n, Φ_n) transferred to (ν_n, ψ_n) event-by-event?

The flow harmonic coefficients v_n are influenced by eccentricities (ε_n), fluctuations, system size, speed of sound $c_s(\mu_B, T)$, and transport coefficient $\frac{\eta}{s}(\mu_B, T)$

- > What is the nature of the flow fluctuation?
- What is the space-time evolution of the produced matter?
 How are (ε_n, Φ_n) transferred to (ν_n, ψ_n) event-by-event?
- > What are the properties of the produced matter?

Motivation

- > Flow harmonics are sensitive probes for $\frac{\eta}{s}(T)$ due to the enhanced viscous response
- > Higher-order flow harmonics $(v_{n=4,5})$ have multiple contributions:
 - ✓ Linear response $\propto \varepsilon_n$
 - ✓ Mode-coupled non-linear response $\propto \varepsilon_2 \varepsilon_m$ (*m* = 2,3) and Event-plane (E-P) correlations
- > Flow harmonics can constrain $\frac{\eta}{s}(T)$ and differentiate between initial state models
- > The difference between forward and backward event planes can probe the longitudinal fluctuations

Motivation

- Flow harmonics are sensitive probes for $\frac{\eta}{s}(T)$ due to the enhanced viscous response
- > Higher-order flow harmonics ($v_{n=4,5}$) have multiple contributions:
 - ✓ Linear response $\propto \varepsilon_n$
 - ✓ Mode-coupled non-linear response $\propto \varepsilon_2 \varepsilon_m$ (*m* = 2,3) and Event-plane (E-P) correlations
- Flow harmonics can constrain $\frac{\eta}{s}(T)$ and differentiate between initial state models
- > The difference between forward and backward event planes can probe the longitudinal fluctuations

Beam-energy dependence for a given collision system:

4

Analysis Method

The multi-particle correlations

Niseem Magdy PRC 107 (2023) 2, 024905 Niseem Magdy PRC 106 (2022) 4, 044911 Niseem Magdy, et al PRC 105 (2022) 4, 044901

Are sensitive to the interplay between initial- and final-state effects.

Azimuthal anisotropy measurements

Correlation function

Two particle correlation function $Cr(\Delta \varphi)$, $Cr(\Delta \varphi) = dN/d\Delta \varphi$ and $v_{nn} = \frac{\sum_{\Delta \varphi} Cr(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} Cr(\Delta \varphi)}$

k-even particle correlations

Are sensitive to the interplay between initial- and final-state effects.

$$\left\langle \left\langle 2m\right\rangle \right\rangle _{n}=\left\langle \left\langle e^{in\sum_{j=1}^{m}\left(\phi_{2j-1}-\phi_{2j}\right)}
ight
angle
ight
angle
ight
angle$$

$$\langle 4 \rangle_{nm} = \left\langle e^{in \left(\phi_1 - \phi_2\right) + im(\phi_3 - \phi_4)} \right\rangle$$

$$v_n^2 \{2\} = \langle 2 \rangle_n$$

$$v_n^4 \{4\} = 2 \langle 2 \rangle_n^2 - \langle 4 \rangle_n$$

$$6 v_n^6 \{6\} = \langle 6 \rangle_n - 9 \langle 2 \rangle_n \langle 4 \rangle_n + \langle 2 \rangle_n^3$$

7

k-even particle correlations

Are sensitive to the interplay between initial- and final-state effects.

2 (-)

Are sensitive to the initial state effects.

$$NSC(n,m) = \frac{\langle 4 \rangle_{nm} - \langle 2 \rangle_n \langle 2 \rangle_m}{\langle 2 \rangle_n^{Sub} \langle 2 \rangle_m^{Sub}}$$

$$v_n \{4\}/v_n \{2\}$$
 $v_n \{6\}/v_n \{4\}$

$$r_{n}(\eta) = \frac{\left\langle V_{n}(-\eta) V_{n}^{*}(\eta_{ref}) \right\rangle}{\left\langle V_{n}(\eta) V_{n}^{*}(\eta_{ref}) \right\rangle} = \frac{\left\langle v_{n}(-\eta) v_{n}(\eta_{ref}) \cos\{n[\Psi_{n}(-\eta) - \Psi_{n}(\eta_{ref})]\}\right\rangle}{\left\langle v_{n}(\eta) v_{n}(\eta_{ref}) \cos\{n[\Psi_{n}(\eta) - \Psi_{n}(\eta_{ref})]\}\right\rangle}$$

n-m flow harmonics correlations

n-order flow harmonic fluctuations

Differential flow angle fluctuations

Models for comparisons

(1) P. Alba, et al. PRC 98, 034909 (2018)

- The model use event-by-event fluctuating initial conditions generated by the TRENTO model with free parameters calibrated to fit experimental observables.
- The model use the smoothed particle hydrodynamics (SPH) Lagrangian code, v-USPhydro, to solve the viscous hydrodynamic equations taking into account shear viscous effects.
- > The viscosity is determined by fitting v_2 {2} and v_3 {2} across centrality for different equation of state individually.

(2) B.Schenke, et al. PRC 99, 044908 (2019)

The model used the impact parameterdependent Glasma model to initialize the viscous hydrodynamic simulation MUSIC and employ the UrQMD transport model for the low-temperature region of the collisions.

Width, height, and position of ζ/s are free parameters

STAR Collaboration PRL 129 25, 252301 (2022)

The $v_2\{k\}$ and $(v_2\{4\}/v_2\{2\})$ centrality dependance

- > $v_2{4}/v_2{2}$ decrees from central to peripheral collisions
- > The model calculations:
 - (I) $(v_2\{4\}/v_2\{2\})$ agrees well with the data
 - (II) $(v_2\{4\}/v_2\{2\})$ and $(\epsilon_2\{4\}/\epsilon_2\{2\})$ bracket the data

	Hydro-I	Hydro-II
η/s	0.12	0.05
Initial conditions	IP-Glasma	TRENTO
Contributions	Hydro + Hadronic cascade	Hydro + Direct decays

STAR Collaboration PRL 129 25, 252301 (2022)

The $v_2\{k\}$ and $(v_2\{4\}/v_2\{2\})$ centrality dependance

		`
	Hydro-I Hydro-II	
η/s	0.12	0.05
Initial conditions	IP-Glasma	TRENTO
Contributions	Hydro + Hadronic cascade	Hydro + Direct decays

→ v_2 {4}/ v_2 {2} show weak dependence on particle species.

STAR Collaboration PRL 129 25, 252301 (2022)

The $v_2\{k\}$ and $(v_2\{4\}/v_2\{2\})$ centrality dependance

	Hydro-I	Hydro-II	
η/s	0.12	0.05	
Initial conditions	IP-Glasma	TRENTO	
Contributions	Hydro + Hadronic cascade	Hydro + Direct decays	

> v_2 {4}/ v_2 {2} show weak dependence on particle species. The influence from final-state is less than the one from initial-state ?

9

STAR Collaboration PRL 129 25, 252301 (2022)

 $\succ v_2$ {k} show characteristic BES dependence.

STAR Collaboration PRL 129 25, 252301 (2022)

- $\succ v_2$ {k} show characteristic BES dependence.
- → v_2 {4}/ v_2 {2} show weak dependence on beam energy.
- > Within uncertainties, $v_2\{6\}/v_2\{4\}$ are consistence with unity

STAR Collaboration PRL 129 25, 252301 (2022)

- $\succ v_2$ {k} show characteristic BES dependence.
- → v_2 {4}/ v_2 {2} show weak dependence on beam energy.
- > Within uncertainties, $v_2\{6\}/v_2\{4\}$ are consistence with unity

The influence from final-state is less than the one from initial-state ?

Anisotropic Flow Correlations

 \checkmark Consistent with the expected anti-correlation between ϵ_2 and ϵ_3

- \diamond Correlation between v_2 and v_4
 - \checkmark Consistent with the expectations from mode coupling between v_2 and v_4

Anisotropic Flow Correlations

 $\overline{20}$

10

30

40

Centrality (%)

50

- Correlation between v_2 and v_4
 - ✓ Consistent with the expectations from mode coupling between v_2 and v_4
- ✤ NSC(n, m) show weak dependence on beam energy.

The influence from final-state is less than the one from initial-state ?

60

Longitudinal dynamics in heavy-ion collisions

 $r_2(\eta)$ is there no apparent difference between 27 GeV and 19 GeV because of their small different energy?

Longitudinal dynamics in heavy-ion collisions

1999 J

Are sensitive to the interplay between initial- and final-state effects.

k-odd particle correlations

$$\langle 3 \rangle_{n+m,nm} = \left\langle e^{i(n+m\,\varphi_1 - n\varphi_2 - m\varphi_3)} \right\rangle$$

$$v_{n+2}^{MC} = \frac{\left\langle \left\langle \cos((n+2)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B) \right\rangle \right\rangle}{\sqrt{\langle v_2^2 v_n^2 \rangle}} \qquad v_{n+2}^{Linear} = \sqrt{\left(v_{n+2}^{Inclusive}\right)^2 - (v_{n+2}^{MC})^2}$$

Are sensitive to the interplay between initial- and final-state effects.

k-odd particle correlations

$$\langle 3 \rangle_{n+m,nm} = \left\langle e^{i(n+m\,\varphi_1 - n\varphi_2 - m\varphi_3)} \right\rangle$$

$$v_{n+2}^{MC} = \frac{\left\langle \left\langle \cos((n+2)\varphi_1^A - 2\varphi_2^B - n\varphi_3^B) \right\rangle \right\rangle}{\sqrt{\langle v_2^2 v_n^2 \rangle}} \qquad v_{n+2}^{Linear} = \sqrt{\left(v_{n+2}^{Inclusive}\right)^2 - (v_{n+2}^{MC})^2}$$

Are sensitive to the initial state effects.

Event plane angular correlations

$$\rho_{n+2,2n} = \frac{v_{n+2}^{Non\ Linear}}{v_{n+2}^{Inclusive}} \quad \sim \langle \cos((n+2)\Psi_{n+2} - 2\Psi_2 - n\Psi_n) \rangle$$

Transverse momentum flow correlations

STAR Collaboration STAR Collaboration PLB 839 137755 (2023) PLB 809 135728 (2020)

$$C_{4,22} = \left\langle \left\langle \cos(4\varphi_1^A - 2\varphi_2^B - 2\varphi_3^B) \right\rangle \right\rangle$$
$$C_{5,23} = \left\langle \left\langle \cos(5\varphi_1^A - 2\varphi_2^B - 3\varphi_3^B) \right\rangle \right\rangle \qquad \Leftrightarrow$$

Two-subevents reduce the short-range non-flow effect on the three-particle correlations.

	Hydro-1 [67]		Hydro–2 ^{<i>a</i>/<i>b</i>} [68]	
η/s Initial conditions Contributions	0.05 ditions TRENTO Initial conditions ons Hydro + Direct decays		0.12 IP-Glasma Initial conditions (a) Hydro + Hadronic cascade (b) Hydro only	
(I) P. Alba, et PRC 98, 034	t al. 4909 (2018)	(II) B.S PRC 99	chenke , et al. 9, 044908 (2019)	14

STAR Collaboration STAR Collaboration PLB 809 135728 (2020) PLB 839 137755 (2023)

$$C_{4,22} = \left\langle \left\langle \cos(4\varphi_1^A - 2\varphi_2^B - 2\varphi_3^B) \right\rangle \right\rangle$$
$$C_{5,23} = \left\langle \left\langle \cos(5\varphi_1^A - 2\varphi_2^B - 3\varphi_3^B) \right\rangle \right\rangle \qquad \Leftrightarrow$$

Two-subevents reduce the short-range non-flow effect on the three-particle correlations.

Both models fit the single v_n ; therefore, we need additional constraints in order to describe the data.

	Hydro-1 [67]		Hydro $-2^{a/b}$ [68]	
η/s Initial conditions Contributions	n/s0.05nitial conditionsTRENTO Initial conditionsContributionsHydro + Direct decays		0.12 IP-Glasma Initial conditions (a) Hydro + Hadronic cascade (b) Hydro only	
(I) P. Alba, e PRC 98 , 034	t al. 4909 (2018)	(II) B.S PRC 99	Schenke , et al. 9, 044908 (2019)	14

STAR Collaboration STAR Collaboration PLB 839 137755 (2023) PLB 809 135728 (2020)

$$C_{4,22} = \left\langle \left\langle \cos(4\varphi_1^A - 2\varphi_2^B - 2\varphi_3^B) \right\rangle \right\rangle$$
$$C_{5,23} = \left\langle \left\langle \cos(5\varphi_1^A - 2\varphi_2^B - 3\varphi_3^B) \right\rangle \right\rangle \qquad \Leftrightarrow$$

Two-subevents reduce the short-range non-flow effect on the three-particle correlations.

Both models fit the single v_n ; therefore, we need additional constraints in order to describe the data.

$C_{4,22}$ and $C_{5,23}$ show dependance on a beam
energy

	Hydro-1 [67]		Hydro $-2^{a/b}$ [68]	
η/s Initial conditions Contributions	0.05 TRENTO Initial conditions Hydro + Direct decays		0.12 IP-Glasma Initial conditions (a) Hydro + Hadronic cascade (b) Hydro only	
(I) P. Alba, e PRC 98, 03	t al. 4909 (2018)	(II) B.S PRC 99	Schenke , et al. 9, 044908 (2019)	14

Linear and non-linear flow v_k (k=4,5) decomposition

Initial conditions

Contributions

STAR CollaborationSTAR CollaborationPLB 839 137755 (2023)PLB 809 135728 (2020)

Mode-coupling coefficient $\chi_{k,nm}$ and the E-P angular correlation $\rho_{k,nm}$

TRENTO Initial conditions

Hydro + Direct decays

IP-Glasma Initial conditions

(b) Hydro only

(a) Hydro + Hadronic cascade

Initial conditions

Contributions

TRENTO Initial conditions

Hydro + Direct decays

IP-Glasma Initial conditions

(b) Hydro only

(a) Hydro + Hadronic cascade

STAR Collaboration STAR Collaboration PLB 839 137755 (2023) PLB 809 135728 (2020)

Mode-coupling coefficient $\chi_{k,nm}$ and the E-P angular correlation $\rho_{k,nm}$

Hydro + Direct decays

Contributions

(a) Hydro + Hadronic cascade

(b) Hydro only

STAR Collaboration STAR Collaboration PLB 839 137755 (2023) PLB 809 135728 (2020)

Mode-coupling coefficient $\chi_{k,nm}$ and the E-P angular correlation $\rho_{k,nm}$

the one from initial-state ?

Transverse momentum flow correlations

G. Giacalone, B.Schenke, C.Shen, Phys. Rev. Lett. 128 (2022) 4, 042301

Transverse momentum flow correlations

