Far-Forward and Far-Backward Detectors at the EIC

Alex Jentsch (Brookhaven National Laboratory) For the ePIC Collaboration

RHIC/AGS Annual User's Meeting
August 1ṣt-4th, 2023 Upton, NY
defferson Lab

What is meant by Far-Forward?

| MAPS tracker MPG trackers ToF, DIRC, RICH detectors |
| :---: | :---: | :---: | :---: |

What is meant by Far-Forward?

What is meant by Far-Forward?

hadronic calorimeters
solenoid coils
e/m calorimeters

| MAPS tracker MPG trackers ToF, DIRC, RICH detectors |
| :---: | :---: | :---: | :---: |

Overall detector requirements:

- Large rapidity $(-4<\eta<4)$ coverage; and far beyond in far-forward/far-backward detector regions

Rapidity is related to the polar angle $\rightarrow 0<\eta<4$ equates to $2.1^{\circ}<\theta<90^{\circ} \quad \eta=-\ln (\tan (\theta / 2))$ pseudorapidity
cpres
8.5 m

What is meant by Far-Forward?

hadronic calorimeters
solenoid coils
e/m calorimeters

Scattered (detected) particles

Overall detector requirements:

- Large rapidity $(-4<\eta<4)$ coverage; and far beyond in far-forward/far-backward detector regions

Rapidity is related to the polar angle $\rightarrow 0<\eta<4$ equates to $2.1^{\circ}<\theta<90^{\circ} \quad \eta=-\ln (\tan (\theta / 2))$ pseudorapidity

Far-forward here means $\boldsymbol{\theta}<2.1^{\circ}$ (~37 mrad)

What is meant by Far-Forward?

hadronic calorimeters
solenoid coils
e/m calorimeters

| MAPS tracker MPG trackers ToF, DIRC, RICH detectors |
| :---: | :---: | :---: | :---: |

Overall detector requirements:

- Large rapidity $(-4<\eta<4)$ coverage; and far beyond in far-forward/far-backward detector regions

Rapidity is related to the polar angle $\rightarrow 0<\eta<4$ equates to $2.1^{\circ}<\theta<90^{\circ} \quad \eta=-\ln (\tan (\theta / 2))$ pseudorapidity

(some) Far-Forward Processes at the EIC

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei

coherent/incoherent J / ψ production in e+A

u-channel backward exclusive electroproduction

(some) Far-Forward Physics at the EIC

Sullivan process

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei
-)

coherent/incoherent J / ψ production in e+A
[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) [3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch,
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

(some) Far-Forward Physics at the EIC

$>$ Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states \rightarrow tailored detector subsystems.
$>$ Various collision systems and energies (h: 41, 100-275 GeV, e: 5-18 GeV ; e+p, e+d, e+Au, etc.).
$>$ Placing and operation of far-forward detectors uniquely challenging due to integration with accelerator.

BOpf combined function magnet

Far-Forward Detector Subsystems

B0 Detectors

$>$ Charged particle reconstruction and photon tagging.
> MAPS for tracking + timing layer (e.g. LGADs).
$>$ Photon detection (tagging or full reco).

Credit to Ron Lassiter

This is the opening where the detector planes will be inserted

Preliminary Parameters:
$229.5 \mathrm{~cm} \times 121.1 \mathrm{~cm} \times 195 \mathrm{~cm}$ (Actual length will be shorter)

B⿳⺈⿴囗十一贝刂电Detectors

Design for two detectors is converging：

Si Tracker：

－ 4 Layers of AC－LGAD
－Great timing capabilities
－Sufficient position resolution by utilizing charge sharing
－Technology overlap w／Roman pots EM Calorimeter：
－ $1352 \times 2 \times 7^{*} \mathrm{~cm}^{3}$ LYSO crystals
－Good timing and position resolution
－Technology overlap with ZDC

＊ZDC wants slightly longer crystals，ideally，we will use the same length in both detectors

Si Tracker:

- Resolution plots made by Alex J with standalone setup (more here and here)
- ACTS Tracking (a long-standing problem) was recently solved and is implemented in the simulation (see recent Sakib R slides), we expect more results soon

EM Calorimeter:

- Caveat - studies performed with PbWO4 crystals, LYSO crystals still to be implemented in the simulation
- General performance studies (more in FF weekly meeting)
- Sensitivity to soft photons (see Eden M. talk at the EICUG EC workshop early this week)

- $\quad 27 \mathrm{~cm}$ spacing with fully AC-LGAD system and 5\% radiation length may be the most-realistic option.
- Needs to be looked at with proper field map and layout.
- Is this resolution going to be a problem?

Note: momentum resolution (dp / p) is $\sim 2-4 \%$, depending on configuration.

- Acceptance $5.5<\theta<23 \mathrm{mrad}$
- Very low material budget in $5<\eta<5.5$
$\square-8$

Particles within $5.5<\theta<15$ mrad don't cross the beampipe

Photons:

> High acceptance in a broad energy range (> 100s MeV), including $\sim \mathrm{MeV}$ de-excitation photons

- Energy resolution of 6-7\%
> Position resolution of $\sim 3 \mathrm{~mm}$
Neutrons:
> 50% detection efficiency (λ is almost 1)
electron beampipe

Where do the particles go?

Where do the particles go?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Protons with $\sim 50-$
60% momentum
w.r.t. steering

longitudinal momentum fraction

$$
\boldsymbol{x}_{L}=\frac{\boldsymbol{p}_{z, \text { proton }}}{\boldsymbol{p}_{z, \text { beam }}}
$$

Where do the particles go?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear

breakup!

Where do the particles go?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Roman Pots and OMD

Protons
$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$
Full GEANT4 simulation.

Protons
123.75 < E < 151.25 GeV (45\% < xL < 55\%)
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Roman Pots and OMD

CAD Look credit: Ron Lassiter

Roman Pots and OMD

- Technology
- "Potless" design concept with thin RF foils surrounding detector components.

RP

Roman Pots and OMD

- "Potless" design concept with thin RF foils surrounding detector components.
- 500um, pixilated AC-LGAD sensor, with 30-40ps timing resolution \rightarrow High-precision space and time information!
-
- Similar concept for the OMD, just different active area and shape.

THIIITITI

Roman Pots and OMD

- Technology
- "Potless" design concept with thin RF foils surrounding detector components.
- 500 um, pixilated AC -LGAD sensor, with $30-40$ ps timing resolution \rightarrow High-precision space and time information!

- Similar concept for the OMD, just different active area and shape.

More engineering work is currently underway to optimize the layout, support structure, cooling, and movement systems for inserting the detectors into the beamline.

Summary of Detector Performance

- All beam effects included!
- Angular divergence.
- Crossing angle.
- Crab rotation/vertex smearing.

Beam effects the dominant source of momentum

 smearing!
Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct neutral particles
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct neutral particles
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

ZDC - What's New

- $1^{\text {st }}$ Silicon \& crystal calorimeter (PbWO4 or LYSO):
- Smaller lateral dimension $(x, y)=(56,54) \mathrm{cm}$.

Readout setup from top \& bottom

- W/Silicon Imaging EMCAL
- Transverse size $(x, y)=$ $(56,54) \mathrm{cm}$
- 12 layers ($\sim 24 \chi_{0}$)
- Pb-Scintillator (+ fused silica)
- Towers of $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 48 \mathrm{~cm}$, each module $60 \mathrm{~cm} \times 60 \mathrm{~cm} \times 48 \mathrm{~cm}$
- 3 modules

ZDC - Performance

Energy Resolution

- Energy resolution in the new design acceptable \rightarrow Optimization, test of different ideas within the size limit.
- Next steps:
- Implementation of reconstruction
- Position resolution \& shower development stud place for the imaging part of HCAL

Far-Backward Detectors

Measuring Luminosity

Experimental Goal:

Count the number of Bremsstrahlung photons: N_{\curlyvee}
Photons travel co-linear with electron in beam pipe

Pair Spectrometer (PS):
Counts pair conversions
Direct photon CAL:
Counts photons directly.
Trackers

Tagging Electrons at Low-Q²

- Jaroslav Adam (Project Lead) jaroslav.adam@fjfi.cvut.cz
- Simon Gardner (Technical Lead) Simon. Gardner@Glasgow.ac.uk
- Two low- Q^{2} tagger detectors along outgoing electron beam pipe
- Placed at about -20 m and -36 m from IP

Slide from Jaroslav Adam (CTU)

Tagging Electrons at Low-Q²

- Photoproduction in $10^{-3} \lesssim Q^{2} \lesssim 10^{-1} \mathrm{GeV}^{2}$
- Scattered electrons for meson spectroscopy and exclusive pair production
- Help for luminosity measurement by coincidence with pair spectrometer
- Large background and event rates due to Bethe-Heitler bremsstrahlung - illustrated by comparing to photoproduction cross section
- The background can be mitigated by good tracking and Q^{2} reconstruction

Tagging Electrons at Low-Q²

- Detectors outside beam vacuum
- Several considerations for exit window (material, thin mesh followed by 90° exit window)

Slide from Jaroslav Adam (CTU)

Low-Q² Reconstruction

- Two different ML algorithms giving compatible results
- The algorithms connect reconstructed tracks to kinematics of original scattered electrons (energy and polar and azimuthal angle)
- Q^{2} is obtained from electron energy and polar angle
- Plot shows combined reconstruction in low- Q^{2} taggers and central detector

Low-Q² Reconstruction

- Mixed hepmc of signal (quasi-real photoproduction) and background (Bethe-Heitler) events
- Event rates are obtained as a function of reconstructed Q^{2}
- Background tracks reconstruct dominantly to very low Q^{2}

Slide from Jaroslav Adam (CTU)

Summary and Takeaways

- Far-Forward and Far-Backward detectors uniquely challenging!
- Integrated with beamline \rightarrow crowded area, complicated constraints on rates, beam operations, etc.
- Trying to cover broad phase space not covered by main detector \rightarrow Crucial for physics program!
- Technologies identified for the all subsystems, and simulations have been carried out \rightarrow engineering design underway for CD-2/3A

Thank you!

Backup

Preliminaries

- The EIC physics program includes reconstruction of final states with very far-forward protons, from many different possible collision systems.
- e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup).
- Produces protons with a broad range in longitudinal momentum, which then traverse the full hadron-going lattice (dipoles and quads).
- Momentum reconstruction requires transfer matrices to describe particle motion through the magnets.

$$
\left(\begin{array}{c}
x_{i p} \\
\theta_{x, i p} \\
y_{i p} \\
\theta_{y, i p} \\
z_{i p} \\
\Delta p / p
\end{array}\right)=\left(\begin{array}{llllll}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \\
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
d_{0} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} \\
e_{0} & e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\
f_{0} & f_{1} & f_{2} & f_{3} & f_{4} & f_{5}
\end{array}\right)\left(\begin{array}{c}
x_{\text {det. }} \\
\theta_{x, \text { det. }} \\
y_{\text {det. }} \\
\theta_{y, \text { det. }} \\
z_{\text {det. }} \\
\Delta p / p
\end{array}\right)
$$

- Transforms coordinates at detectors (position, angle) to original IP coordinates.
- Matrix unique for different positions along the beam-axis!

Preliminaries

$\left(\begin{array}{cccccc}1.88 & 28.97 & .0 & 0.0 & 0.0 & 0.25 \\ -0.0211 & 0.21 & 0.0 & 0.0 & 0.0 & -0.034 \\ 0.0 & 0.0 & -2.26 & 3.78 & 0.0 & 0.0 \\ 0.0 & 0.0 & -0.18 & -0.145 & 0.0 & 0.0 \\ 0.057 & 1.014 & 0.0 & 0.0 & 1.0 & 0.026 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

From BMAD - central trajectory 275 GeV proton

- Matrix describes how particles travel through the magnets toward the detector.

Matrix enables reconstruction of scattering information at the IP using only local hits at the detector.

Detector

The Problem

$\left(\begin{array}{cccccc}1.88 & 28.97 & 0.0 & 0.0 & 0.0 & 0.25 \\ -0.0211 & 0.21 & 0.0 & 0.0 & 0.0 & -0.034 \\ 0.0 & 0.0 & -2.26 & 3.78 & 0.0 & 0.0 \\ 0.0 & 0.0 & -0.18 & -0.145 & 0.0 & 0.0 \\ 0.057 & 1.014 & 0.0 & 0.0 & 1.0 & 0.026 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

From BMAD - central trajectory 275 GeV proton

- Protons from nuclear breakup, or high- $\mathrm{Q}^{2} \mathrm{e}+\mathrm{p}$ interactions \rightarrow protons can have large deviations from central orbit momentum \rightarrow require unique matrices!

$$
\begin{aligned}
& \text { longitudinal momentum fraction } \\
& \qquad x_{L}=\frac{p_{z, \text { proton }}}{p_{z, \text { beam }}}
\end{aligned}
$$

Full GEANT4 simulation.
Protons
$E=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Results - Momentum

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

[^0]
Results - p_{T}

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

Reconstruction

- General methods for tracking:
- Matrix method (standard) \rightarrow should always have access to this to check performance.
- Machine learning methods \rightarrow more-general for broader set of final-state momenta.

- Framework: PyTorch
- Architecture: Multi-Layer Perceptron
- 3 Independent Models:
- 5 Hidden Layers, 128 Neurons
- Loss Function: Huber Loss
- Optimizer: Adam
- Performance is excellent for P_{2} and shows little dependence on X_{L}
- P_{t} performance is good, but needs further optimization, and performance suffers at very low P_{t}

David Ruth \& Sakib Rahman

Roman Pots

Roman Pots are silicon sensors placed in a "pot", which is then injected into the beam pipe, tens of meters or more from the interaction point (IP).
Momentum reconstruction carried out using matrix transport of protons through magnetic lattice.

Roman "Pots" @ the EIC
25.6 cm

DD4HEP
Simulation
$>1 \sigma \sim 1 \mathrm{~mm}$

- Low-pT cutoff determined by beam optics.
$>$ The safe distance is $\sim 10 \sigma$ from the beam center.
$>$ These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.
$\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size.
ε is the beam emittance.

$$
\sigma(z)=\sqrt{\varepsilon \cdot \beta(z}
$$

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

Digression: Machine Optics
275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$-> lower lumi., smaller beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

Using the two configurations, we are able to measure the low-t region (with better acceptance) and high-t tail (with higher luminosity).

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$->
lower lumi., smaller beam at RP

Digression: Machine Optics

Digression: Machine Optics

[^1]

B0 Tracking and EMCAL Detectors

25.6 cm

Technology

$>$ 500um，pixilated AC－LGAD sensor provides both fine pixilation．
＞＂Potless＂design concept with thin RF foils surrounding detector components．

レレケாடr गlliuldull

$>$ Status

\checkmark Acceptance： $0.0^{*}<\theta<5.0$ mrad（lower bound depends on optics）．
\checkmark Detector directly in－vacuum a challenge for both detector and beam \rightarrow impedance studies underway．
\checkmark Approved generic R\＆D to develop more－adaptive reconstruction code！

Off-Momentum Detectors

Off-momentum detectors implemented as horizontal "Roman Pots" style sensors.

```
Protons
\[
123.75<\mathrm{E}<151.25 \mathrm{GeV}
\]
\[
(45 \%<x L<55 \%)
\]
\[
0<\boldsymbol{\theta}<5 \mathrm{mrad}
\]
```


The Far-Forward Detectors collaboration

Control Account Manager

Yulia Furletova

ZDC DSSTC:
Yuji Goto
BO DSSTC:
BO DSSTC:
Zvi Citron
Zvi Citron
Tel Aviv University, Israel

Ben Gurion University of the Negev, Israel

RIKEN, Japan

BNL, USA
IJCLab, Orsay, France

[^0]: "(x)

[^1]: Improves low p_{t} acceptance.

