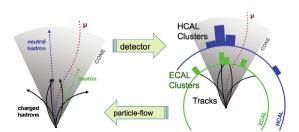
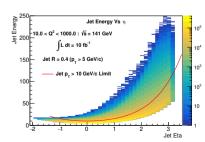
Hadronic Calorimetry in ePIC

- design and performance -

Particle Flow with HCals at the EIC

Particle flow:

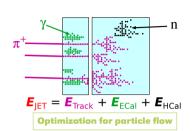

- Combination of all available detector information for particle reconstruction
 - → e.g. tracking and ECals for electrons, tracking and all calorimeters for hadrons
- Reconstructed energy or lack of energy deposit provide valuable information

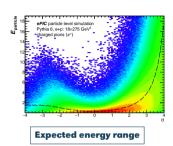

Jet reconstruction:

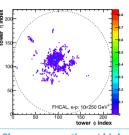
- Large physics program with inclusive iets at EIC
 - ightarrow high energetic jets in forward region $\eta > 1.5$
- Jet energy scale and resolution rely on full particle flow
 - → high energetic hadrons constrained by HCals (focus on neutral hadrons)

Hadron/Lepton PID:

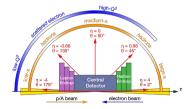
- Hadrons on average only leave MIP energy in ECals
 - ightarrow energy/momentum constrained by tracking and HCals
- Neutron detection only possible with HCals in ePIC
- Muon PID possible depending on HCal design

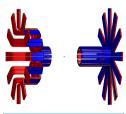






HCal design considerations





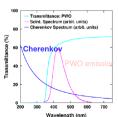
Shower separation at high η

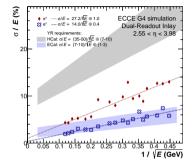
Integration and services

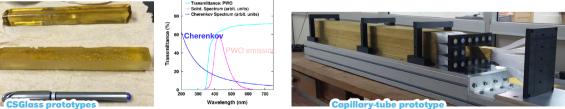
N. Schmidt (ORNL) August 1, 2023

HCal technology catalogue

Sampling calorimeter

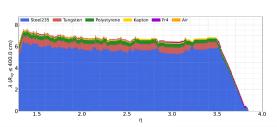

- \rightarrow Zeus Uranium-Sci calorimeter best-in-class with $\sigma_E/E \propto 35\%/\sqrt{E}$
- \rightarrow performance depending on material Z (more is better)
- → typically 3-20mm thick absorbers with 2.5-4mm thick scintillator plates

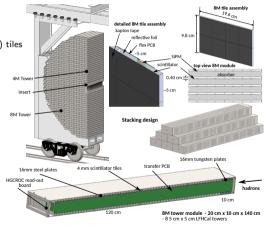

Dual readout calorimeter


- ightarrow projective approach similar to IDEA ($\sigma/E=11\%/\sqrt{E}\oplus0.8\%$)
- → various absorber and fiber arrangements possible
- \rightarrow option as possible high n inlay
- → machine learning approach necessary for high granularity clusterization

CherenkovScintillation (CS) Glass

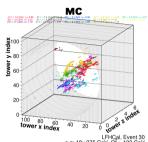
- → Dual-readout alternative with separate readout of C and S light
- → R&D necessary for sufficient UV C-light transparency
- \rightarrow low production cost

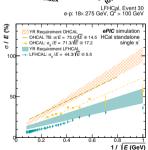



ePIC Forward (p-going) HCal design

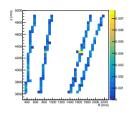
LFHCAL = Longitudinally-separated Forward Hadronic CALorimeter

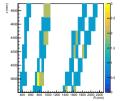
- Module structure containing 8 tower segments each
 - \rightarrow 5 \times 5 \times 140cm³ tower dimensions
 - ightarrow approximately 6–7 λ/λ_0 depth
- Longitudinal separation into 7 segments
 - \rightarrow each containing 10 absorber (1.6cm) and 10 scintillator (4mm) tiles
 - → pre-shower segment with tungsten absorber instead of steel
- \bullet Acceptance of 1.1 < n < 3.2
 - $ightarrow z_{
 m min} = 3.6$ m, 20 < R < 270cm
- Readout via SiPM on tile and small flex PCB
 → summing signals in each longitudinal segment
- Flux return for magnet and support structure for forward ECal
- Upgrade path with individual tile readout





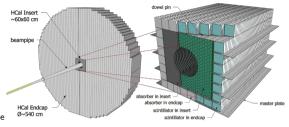
ePIC LFHCAL performance and PID

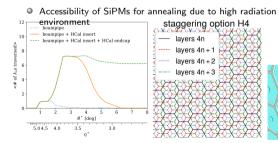


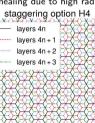


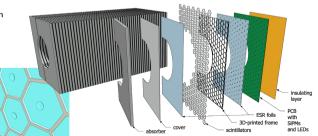
- High granularity eventually allows for detailed shower studies → ML-based approach for shower separation being studied
- LFHCAL fulfills YR performance requirements:
 - \rightarrow ePIC simulation $\sigma/E = 44\%/\sqrt{E} \oplus 5.5\%$
 - → testbeam of prototype planned within FY24
- Good position resolution due to granularity
 - → matching of tracks to individual z-segments possible

- → muons generate MIP signal in crossed scintillator tiles
- → PID performance improves with increasing z-segmentation
- → requirement of more than 80% matched segments provides strong muon PID

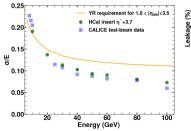


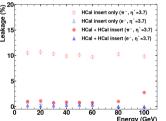


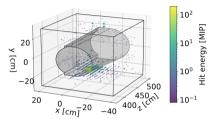

ePIC Forward HCal Insert design

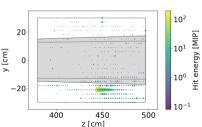


- Design inspired by CALICE calorimeter at the future ILC
 - → SiPM on tile and high granularity approach
 - → idea to provide 5D shower information (position, energy, and time)
- Hexagonal scintillator plates sandwiched between steel absorbers plates
 - \rightarrow layer-dependent granularity (1–7: 9cm², 8–14: 25cm², 15-50: 36cm²)
- Staggering of layers for improved resolution
- Distance to beampipe minimized for largest possible acceptance $\rightarrow 3.2 < n < 4.0$ (14.6 < R < 30cm), tail to even higher n

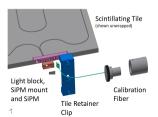


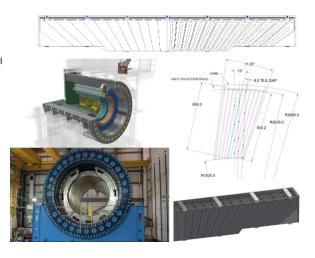



ePIC HCal Insert performance



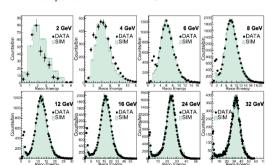
- Clusterizer not yet developed
 - \rightarrow performance studies based on summed hit information
 - → ML-based approach being studied
- Fulfills YR performance requirements
 - → in agreement with CALICE test-beam data
- \bullet Strong shower leakage reduction at high η compared to standalone LFHCAL
- Further performance improvements with timing information possible
 - → to be studied in combination with MI-clusterizer

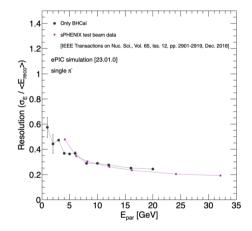




ePIC Barrel HCal design

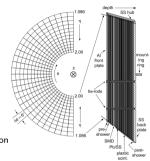
- Repurpose of sPHENIX outer barrel HCal for ePIC
 - → serves as part of solenoid flux return
- 32 sectors with 240 tiles per sector
 - \rightarrow tiles tilted by 12° in ϕ
 - \rightarrow 8mm thick scint. tiles with 26.1–42.4mm tapered steel plates
- Readout by 3 × 3mm² SiPMs
 - → grouping of 5 tiles or individual readout
 - \rightarrow existing SiPMs likely to be replaced by Hamamatsu S14160-3015PS
 - → H2GCROC3 used as front-end board

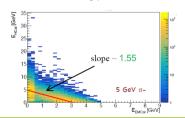




ePIC Barrel HCal performance

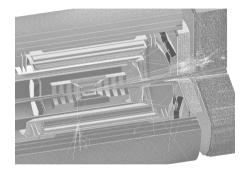
- YR requirement of 85-100%/ \sqrt{E} \oplus 7-10%
- Energy resolution determined in sPHENIX test beam
 - → meets YR requirements
 - → ePIC simulation reproduces resolution nicely
- Multiple calibration steps performed
 - → cosmic ray telescope maps for each tile
 - → temperature calibration for SiPMs


ePIC Backward HCal design and performance


 Purpose: A future backward HCal shall provide functionality of a tail catcher for the high resolution e/m calorimeter in electron identification, as well as for jet kinematics measurement at small Bjorken x

- Repurpose and extension of STAR EEMC megatiles
 - → ePIC HCal has larger radius
 - → special construction of outer tile pieces
- Sampling HCal with 10 layers $(2.4\lambda/\lambda_0)$
 - \rightarrow 4cm steel and 4mm scintillator plates
- Light guided by WLS fibers and collected by SiPMs
- Readout based on HGCROC/EICROC
- Performance to be studied

 → energy sharing with EEEMC, position and angular resolution studies being performed



Summary

- Overview of HCal systems in ePIC shown
 - → backward: repurposed and extended from STAR EEMC
 - \rightarrow barrel: repurposed from sPHENIX outer barrel HCal
 - → forward: new detectors with SiPM-on-tile technology
- First performance results of simulation and test beams
 - → Yellow Report requirements met by all systems

Hadronic calorimeter detector systems on track for ePIC!

N. Schmidt (ORNL)

August 1, 2023