



# ePIC Tracking System

#### Shujie Li

With many thanks to Ernst Sichtermann and Nicole Apadula

2023 RHIC/AGS Annual Users' Meeting August 2nd, 2023





### **Central Tracker Design**



- Yellow Report
- Detector 1 proposals
- ePIC:
  - Arches
  - Brycecanyon
  - Craterlake
  - o ..

#### **Requirements:**

- High pattern recognition efficiency
- High spatial resolution
- Low material budget
- Good time resolution

#### **Technologies:**

- Monolithic Active Pixel Silicon (MAPS)
- MicroPattern Gaseous Detector layers (MPGD)
- AC-LGAD ToF (See Satoshi Yano's talk)

### **Current Tracking Configuration "Craterlake"**

From ePIC tracking WG, June 2023 https://indico.bnl.gov/event/19854/



SVT MPGDs

ToF (fiducial volume)

Silicon trackers:

- 3 vertex barrels
- 2 outer barrels
- 5 disks (forward/backward)

#### MPGDs:

- Inner barrel
  - (forward/central/backward)
- Outer barrel (MPGD+DIRC)
- 2 disks (forward/backward)

#### AC-LGAD ToF:

- 1 forward disk
- 1 barrel

# Silicon Vertex Tracker (SVT)

High spatial resolution for charged particle tracking Low material budget

- 3 inner vertex barrels
  - ITS3, 65nm MAPS sensor
  - 20x20um pixels
  - 0.05% X/X0
- 2 outer barrels
  - ITS2 staves
  - 0.55% X/X0
- 5 disks (forward/backward)
  - o ITS2
  - 0.24% X/X0

#### **Ongoing R&D:**

- eRD104: readout and power
- eRD111: mechanical structure and cooling
- eRD113: sensor characterization

#### Example: ED0/HD0



#### **MPGD**

Additional hits for pattern recognition Fast timing info for signal/background separation





## **Services and Materials**

Cables guided out along the carbon supporting cone



Courtesy of E. Sichtermann



### **Geometry in DD4hep Simulation**

- Version 23.07 (Craterlake) for July simulation campaign <u>https://github.com/eic/epic/tree/main</u>
- Up-to-date geometry with detailed material descriptions
- Simplified disk geometry (trapezoid instead of staves)
- Use effective thickness of cables assuming uniform azimuthal distribution



### **Track Reconstruction**

- Reconstruction Framework (ElCrecon <u>http://eicrecon.epic-eic.org/</u>)
  - Hits digitization
  - Track finding/fitting:
    - arXiv:1910.03128
    - ACCOMMON Tracking Software
      - Combinatorial Kalman Filter (CKF)
        - Combined track finding and fitting
        - Realistic seeder to provide initial guess







## **Performance Study**

Mid-rapidity: eta bins: -1, -0.5, 0, 0.5, 1



# Summary

- ePIC tracking system combines MAPS and gas detector technologies to fulfill EIC physics requirements. The actual configuration is under development, with several R&D projects to address technical concerns.
- The most recent tracking configuration (Craterlake) is propagated through the July simulation campaign, data analysis on the way.
- The track reconstruction with CKF and realistic seeding demonstrated good momentum and angular resolutions. Ongoing tasks:
  - Performance study with DIS and background
  - Vertexing and PID
  - Use timing information
  - Far-forward tracking development

### Backups

#### **Track Reconstruction in ElCrecon**

Full diagram at <a href="https://eic.github.io/EICrecon/#/design/tracking?id=full-diagram">https://eic.github.io/EICrecon/#/design/tracking?id=full-diagram</a>



## **ACTS: Core Functionality**

https://acts.readthedocs.io/en/latest/index.html



#### ACTS for ePIC https://github.com/eic/EICrecon





### **MPGD Services**

|                                           | Al Thickness<br>(cm) |
|-------------------------------------------|----------------------|
| (BE1 + BE2 + IB1 + IB2 + OB1) z < -167.5  | 0.850                |
| (BE1 + BE2 + IB1 + IB2) -167.5 < z < -120 | 0.574                |
| (BE1 + IB1 +IB2) -120 < z < -110          | 0.443                |
| (IB1 +IB2) -110 < z < -105                | 0.312                |
| (IB2) -105 < z < -48.75                   | 0.156                |
|                                           |                      |
| () -48.75 < z < 48.75                     | 0.000                |
|                                           |                      |
| (IB3) 48.75 < z < 53.75                   | 0.156                |
| (IB3 + IB4) 53.75 < z < 135               | 0.312                |
| (IB3 + IB4+IB5) 135 < z < 148             | 0.468                |
| (IB3 +IB4 +IB5 + FE1) 148 < z < 161       | 0.599                |
| (IB3 +IB4 +IB5 + FE1 +FE2) 161 < z < 174  | 0.730                |
| (IB3 +IB4 +IB5 + FE1 +FE2 + OB2) 174 < z  | 1.006                |



#### Crater Lake (23.07.2)

| Negative Endcap Region |            |          |          |
|------------------------|------------|----------|----------|
|                        | Z-position | Rmin     | Rmax     |
| Si Disk (1)            | -250 mm    | 36.76 mm | 240 mm   |
| Si Disk (2)            | -450 mm    | 36.76 mm | 415 mm   |
| Si Disk (3)            | -650 mm    | 36.76 mm | 421.4 mm |
| Si Disk (4)            | -850 mm    | 40 mm    | 421.4 mm |
| Si Disk (5)            | -1050 mm   | 46.35 mm | 421.4 mm |
| MPGD Disk (1)          | -1100 mm   | 46.5 mm  | 500 mm   |
| MPGD Disk (2)          | -1200 mm   | 46.5 mm  | 500 mm   |
|                        |            |          |          |

#### **Central Region**

#### Positive Endcap Region

| Detector          | 7 min    | 7 max   | R      |               | Z-position |
|-------------------|----------|---------|--------|---------------|------------|
| Si Vertex (1)     | -240 mm  | 240 mm  | 36 mm  | Si Disk (1)   | 250 mm     |
| Si Vertex (2)     | -240 mm  | 240 mm  | 48 mm  | Si Disk (2)   | 450 mm     |
| Si Vertex (3)     | -240 mm  | 240 mm  | 120 mm | Si Disk (3)   | 700 mm     |
| Si Barrel (1)     | -260 mm  | 260 mm  | 270 mm | Si Disk (4)   | 1000 mm    |
| Si Barrel (2)     | -420 mm  | 420 mm  | 430 mm | Si Disk (5)   | 1350 mm    |
| Inner MPGD Barrel | -1050 mm | 1350 mm | 510 mm | MPGD Disk (1) | 1480 mm    |
| Barrel ToF        | -1125 mm | 1740 mm | 630 mm | MPGD Disk (2) | 1610 mm    |
| Outer MPGD Barrel | -1740 mm | 1675 mm | 695 mm | ToF Disk      | 1870 mm    |

Rmax

240 mm

415 mm

421.4 mm

421.4 mm

421.4 mm

500 mm

500 mm

500 mm

Rmin

36.76 mm

36.76 mm

38.46 mm

53.43 mm

70.14 mm

70.14 mm

70.14 mm

85 mm