Neutron Spin from Double-Spectator Tagging at the EIC

- Jackson Pybus
 - MIT
- **EIC** Center at Jefferson Lab

EIC Center at Jefferson Lab

Nucleon Structure Measurements

Measuring nucleon structure fundamental for understanding QCD

Proton:

- Well measured
- Wide coverage in x_B , Q^2
- High precision

Nucleon Structure Measurements

Measuring nucleon structure fundamental for understanding QCD

Proton:

- Well measured
- Wide coverage in x_B , Q^2
- High precision

Neutron:

- No free neutron target
- Using light nuclei to probe the neutron
- Large model dependence

Polarized Neutrons in ³He

- Neutron carries most of the spin in polarized ³He
- Extracting A_1^n from inclusive $A_1^{^{3}He}$:

 $P_n \approx 87 \%$

Polarized Neutrons in ³He

- Neutron carries most of the spin in polarized ³He
- Extracting A_1^n from inclusive $A_1^{^{3}He}$:

 Corrections introduce large uncertainties

Spectator-Tagged DIS

Spectator tagging facilitates effective targets not readily found in nature

Spectator-Tagged DIS

Spectator tagging facilitates effective targets not readily found in nature

• Measure scattered electron for DIS variables: x_B , Q^2

Spectator-Tagged DIS

Spectator tagging facilitates effective targets not readily found in nature

- Measure scattered electron for DIS variables: x_B , Q^2
- Measure spectator system for initial nuclear state: p_i , isospin

- Measure two spectator protons \rightarrow active neutron
- Reduced modeldependency
- Require low momentum for quasi-free neutron

Spectator Tagging at the EIC

- Protons, neutrons, ions separate cleanly in magnetic field
- Low-momentum spectators detected with high efficiency

• Far-forward detection allows measuring particles with high rapidity

- Generate neutron DIS events
- Sample initial nuclear state from ³He model
- Combine for full event $^{3}\text{He}(e, e'p_{s1}p_{s2})X$

I. Friscic, D. Nguyen, J.R. Pybus et al: Phys. Lett. B (2021)

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

Simulate detector response to final-state particles

Event Selection

DIS Cuts:

- $Q^2 > 2 \text{ GeV}^2$
- $W^2 > 4 \text{ GeV}^2$
- 0.05 < y < 0.95

Tagging Cuts:

- Both spectator protons detected
- $|\vec{p}_{s1} + \vec{p}_{s2}| < 0.1 \text{ GeV}$

Bin in x_B , Q^2 , scale to 100 fb⁻¹

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

A_1^n from inclusive ³He(*e*, *e'*)

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

A_1^n from inclusive ³He(*e*, *e'*)

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

Extraction introduces large systematic uncertainties

Tagging improves precision

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

EIC allows measurement in valence region at high- Q^2

Coverage also extends to low- x_R even at low-energy setting

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

Inclusive vs. Tagged A_1^n

I. Friscic, D. Nguyen, J.R. Pybus et al, Phys. Lett. B (2021)

Spectator tagging reduces uncertainty in A_1^n by a factor of >10 at low-x, factor of >2 everywhere

More detailed studies done with ePIC

Highest-energy setting pushes to $x_B < 10^{-3}$, where tagging is critical

NIM-A EIC Special Issue (2023)

5×41 GeV

Combining EIC settings gives substantial kinematic coverage

 Q^2 -evolution of neutron spin structure still poorly known!

NIM-A EIC Special Issue (2023)

Conclusions

- EIC provides unique opportunity to measure neutron spin structure over wide kinematics
- Spectator tagging critical to fully realize this potential

$A_1^n - 3 \times \log_{10}(x_B)$	10-	• • • $x_B = 0.0005$		<i>ECCE</i> Simulation - DJANGOH <i>e</i> ³ <i>He</i> , 10 fb ⁻¹		
		• • • • X _B	= 0.0008	₹	5x41 GeV 18x166 Ge\	/
		• • • • X	$_{B} = 0.0013$	-		
	8-	• • • • •	$x_B = 0.002$	0		-
		$\bullet \bullet \bullet \bullet \bullet \bullet x_B = 0.0032$				
		• • • • •	•• $x_B =$	0.0051		
	6-	• • • • •	• • = X _B	= 0.0082		_
			• • • X	_B = 0.0129		
		₫ ≅ ● ← -	• • • •	$x_B = 0.0205$		
	4 -	⊖ ₫ ≅ € ≎ =	* * * *	• $x_B = 0.03$	25	
		e e ₫ ₫ ≅ ≋	⊕ = ≠ +	• • $x_B = 0$.	0515	-
			9 2 ⊖≖ ≖ ≠	• • $x_B = 0$.0815	
		∞ ≈ ● • •	₫ ₫≎т ≖	≖ 	= 0.1292	
	2-	≖ ≄ ≉ e	₫ ₫ ₫ ≖ĭ	I = 	= 0.2048	-
		<u>0</u> 10 40 40	Ⅰ₽₽₽₽	II = -	$x_B = 0.3246$	
				$\mathbf{\overline{D}} \mathbf{\overline{A}} \mathbf{\overline{A}} = 0 $).5145 L55	
	0-	Ι	ŢŦŢĭ	L		
	10 ⁰	¹⁰¹	10 ²	10 ³	10 ⁴] 10 ⁵
					Q ² (Ge\	/ ²)

Backup

A₁ Spin Asymmetry

• Quark spin structure function:

$$g_1\left(x,Q^2\right) = \frac{1}{2}\sum_i e_i^2 \left[q_i^{\uparrow}\left(x,Q^2\right) - q_i^{\downarrow}\left(x,Q^2\right)\right]$$

Accessed by measuring virtual photon asymmetry:

$$A_1(x,Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$$

• Can be calculated from electron-nucleon spin asymmetries:

$$A_1 = \frac{A_{||}}{D(1+\eta\xi)} - \frac{\eta A_{\perp}}{d(1+\eta\xi)}$$

