Diffractive Physics at the EIC

Yuri Kovchegov The Ohio State University

Outline

- DIS at small x (introduction to color dipoles as degrees of freedom).
- Diffraction at small *x*:
 - Low-mass diffraction and elastic vector meson production.
 - Elastic vector meson production in UPCs.
 - High-mass diffraction: small-x evolution for diffractive scattering in DIS.

DIS at Small x

Dipole picture of DIS

- At small x, the dominant contribution to DIS structure functions does not come from the handbag diagram.
- Instead, the dominant term comes from the dipole picture of DIS, where the virtual photon splits into a quark-antiquark pair, which then interacts with the target.

Dipole picture of DIS

Dipole Amplitude

 The total DIS cross section is expressed in terms of the (Im part of the) forward quark dipole amplitude N:

Small-x Evolution

• Energy dependence comes in through the long-lived s-channel gluon corrections (higher Fock states): $\alpha_s\,\ln s\sim \alpha_s\,\ln\frac{1}{x}\sim 1$

These extra gluons bring in powers of $\alpha_s \ln s$, such that when $\alpha_s << 1$ and $\ln s >> 1$ this parameter is $\alpha_s \ln s \sim 1$ (leading logarithmic approximation, LLA).

Small-x Evolution: Large N_cLimit

- How do we resum this cascade of gluons?
- The simplification comes from the large-Nc limit, where each gluon becomes a quark-antiquark pair: $3 \otimes \bar{3} = 1 \oplus 8 \implies N_c \otimes \bar{N}_c = 1 \oplus (N_c^2 1) \approx N_c^2 1$
- Gluon cascade becomes a <u>dipole</u> cascade (each color outlines a dipole):

Nonlinear Evolution

To sum up the gluon cascade at large-N_c we write the following equation for the dipole S-matrix:

Remembering that S=1 + iT = 1 - N where N = Im(T) we can rewrite this equation in terms of the dipole scattering amplitude N.

Nonlinear evolution at large N_c

As N=1-S we write

Balitsky '96, Yu.K. '99; beyond large N_c, JIMWLK evolution, 0.1% correction for the dipole amplitude

BK solution preserves the black disk limit, N<1 always (unlike the linear BFKL equation)

$$\sigma^{q\bar{q}A} = 2 \, \int d^2 b \, N(x_\perp, b_\perp, Y)$$

Map of High Energy QCD

Can Saturation be Discovered at EIC?

EIC will have an unprecedented small-x reach for DIS on large nuclear targets, enabling decisive tests of saturation and non-linear evolution:

Diffraction at Small x

Diffraction pattern contains information about the size R of the obstacle and about the optical "blackness" of the obstacle.

In optics, diffraction pattern is studied as a function of the angle θ . In high energy scattering the diffractive cross sections are plotted as a function of the Mandelstam variable t with $\sqrt{|t|} = k \sin \theta$.

Optical Analogy

Diffraction in high energy scattering is not very different from diffraction in optics: both have diffractive maxima and minima:

Coherent: target stays intact; Incoherent: target nucleus breaks up, but nucleons are intact.

Diffraction terminology

Low-Mass Diffraction

 ${\rm M_X}^2$ is comparable to ${\rm Q}^2$

Quasi-elastic DIS

Consider the case when nothing but the quark-antiquark pair is produced:

The quasi-elastic cross section is then proportional to the square of the dipole amplitude N:

$$\sigma_{el}^{\gamma^*A} = \int \frac{d^2 x_{\perp}}{4 \pi} d^2 b_{\perp} \int_{0}^{1} \frac{dz}{z (1-z)} |\Psi^{\gamma^* \to q\bar{q}}(\vec{x}_{\perp}, z)|^2 N^2(\vec{x}_{\perp}, \vec{b}_{\perp}, Y)$$

Buchmuller et al '97, McLerran and Yu.K. '99

Diffraction on a black disk

- For low Q² (large dipole sizes) the black disk limit is reached with N=1
- Diffraction (elastic scattering) becomes a half of the total cross section

$$\frac{\sigma_{el}^{q\bar{q}A}}{\sigma_{tot}^{q\bar{q}A}} = \frac{\int d^2 b N^2}{2 \int d^2 b N} \longrightarrow \frac{1}{2}$$

- Large fraction of diffractive events in DIS is a signature of reaching the black disk limit!
- HERA: ~15% (unexpected!) ; EIC: ~25% expected from saturation

Diffractive over total cross sections

• Here's an EIC measurement which may **distinguish saturation from non-saturation** approaches (from the 2012 EIC White Paper):

sat = Kowalski et al '08, plots generated by Marquet no-sat = Leading Twist Shadowing (LTS), Frankfurt, Guzey, Strikman '04, plots by Guzey

Exclusive Vector Meson Production

• An important diffractive process which can be measured at EIC is exclusive vector meson production:

Exclusive VM Production: Probe of Spatial Gluon Distribution

Differential exclusive VM production cross section is

$$\frac{d\sigma^{\gamma^* + A \to V + A}}{dt} = \frac{1}{4\pi} \left| \int d^2 b \, e^{-i \, \vec{q}_\perp \cdot \vec{b}_\perp} \, T^{q \bar{q} A}(\hat{s}, \vec{b}_\perp) \right|^2$$

• the T-matrix is related to the dipole amplitude N:

$$T^{q\bar{q}A}(\hat{s},\vec{b}_{\perp}) = i \int \frac{d^2 x_{\perp}}{4\pi} \int_{0}^{1} \frac{dz}{z(1-z)} \Psi^{\gamma^* \to q\bar{q}}(\vec{x}_{\perp},z) \ N(\vec{x}_{\perp},\vec{b}_{\perp},Y) \Psi^{V}(\vec{x}_{\perp},z)^*$$
Brodsky et al '94, Ryskin '93

- Can study t-dependence of the dσ/dt and look at different mesons to find the dipole amplitude N(x,b,Y) (Munier, Stasto, Mueller '01).
- Learn about the gluon distribution in space. This is similar to GPDs.

Exclusive VM Production as a Probe of Saturation

Plots by T. Toll and T. Ullrich using the Sartre event generator (b-Sat (=GBW+b-dep+DGLAP) + WS + MC, from the 2012 EIC White Paper).

- J/psi is smaller, less sensitive to saturation effects
- Phi meson is larger, more sensitive to saturation effects

Connection to UPCs at RHIC and LHC

Ultra-peripheral collisions

- Consider elastic vector meson production in ultra-peripheral A+A collisions at RHIC and LHC.
- The dipole structure of the interaction is clear from the diagram:
- Again, the cross section depends on the dipole amplitude!

nucleus 1

 J/ψ

Ultra peripheral collision (Ap or AA)

Fast moving highly-charged ions carry strong electromagnetic fields that act as a beam of photons.

 $Q^2 \approx 20 \text{ MeV}^2$ small virtuality

We define R_1 , the ratio of elastic vector meson production cross section to the inelastic cross section

$$R_1 = \frac{\sigma^{\gamma^* A \to V A}}{\frac{d\sigma_{inel}}{d^2 p_T}}$$

Huachen (Brian) Sun, Zhoudunming Tu, YK, in preparation

and R_2 , the double ratio between pA scattering and AA scattering,

$$R_2 = \frac{R_1(\gamma^* A)}{R_1(\gamma^* p)}$$

Double ratio for Au+p and Au+Au for J/ ψ production

Inelastic quark production

$$\frac{d\sigma}{d^{2}p_{T}} \sim A \text{ for } p_{T} > Q_{s}; \qquad \frac{d\sigma}{d^{2}p_{T}} \sim A^{2/3} \text{ for } p_{T} < Q_{s}$$
Elastic J/ψ production
(assuming no nuclear
effects):
$$\sigma_{el}^{J/\psi} \propto A^{4/3}$$

$$\bullet R_{1}(J/\psi) = \frac{\sigma^{\gamma^{*}A \to J/\psi A}}{\frac{d\sigma_{inel}}{d^{2}p_{T}}} = \begin{cases} f_{1}(p_{T})A^{\frac{1}{3}} &, p_{T} > Q_{s} \\ f_{2}(p_{T})A^{\frac{2}{3}} &, p_{T} < Q_{s} \end{cases}$$

$$\bullet R_{1}(\rho) = \begin{cases} f_{1}(p_{T})A^{-\frac{1}{3}} &, p_{T} > Q_{s} \\ f_{2}(p_{T})A^{0} &, p_{T} < Q_{s} \end{cases}$$

$$\bullet R_{2}(J/\psi) = \frac{R_{1}(\gamma^{*}A)}{R_{1}(\gamma^{*}p)} = \begin{cases} A^{\frac{1}{3}} \approx 6 &, p_{T} > Q_{s} \\ A^{\frac{2}{3}} \approx 34 &, p_{T} < Q_{s} \end{cases}$$

$$\bullet R_{2}(\rho) = \begin{cases} A^{-\frac{1}{3}} \approx 0.17 &, p_{T} > Q_{s} \\ A^{0} \approx 0 &, p_{T} < Q_{s} \end{cases}$$

$$\bullet R_{2}(\rho) = \begin{cases} A^{-\frac{1}{3}} \approx 0.17 &, p_{T} < Q_{s} \\ A^{0} \approx 0 &, p_{T} < Q_{s} \end{cases}$$

Double ratio for Au+p and Au+Au for ρ meson production

- Possible signal of saturation? (at Q²=0)
- Note that the rho meson is nonperturbatively large, such that one can question our predictions for UPCs in pA.
- At EIC we would be able to study these processes at large Q², in the perturbative regime.

Huachen (Brian) Sun, Zhoudunming Tu, YK, in preparation

TMD factorisation for diffractive 2+1 jets

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20)

- At high $P_{\perp} \gg Q_s$, collinear factorisation emerges from the dipole picture
 - the gluon can alternatively be seen as a part of the Pomeron
 - essential condition: the gluon is relatively soft $\vartheta_3 \sim \frac{Q_s^2}{Q^2} \ll 1$

3-jet production in DIS at EIC and in UPCs.

• Actually: the "unintegrated" (TMD) version of collinear factorisation

HIT @ LBL, August 23, 2022

Diffractive Jets in γA

Edmond lancu 7 / 21

High-Mass Diffraction

 $M_{\chi}^{2} >> Q^{2}$

- If $\ln(M_X/Q)$ is large, need an evolution equation that re-sums all those gluon emissions contributing to M_X .
- One can ask questions like whether large M_X or small M_X are more probable?
- Also, what happens in the black disk limit? Theoretically only completely elastic and inelastic (no rapidity gaps) processes should remain, with 50% probability each.

Diffraction with fixed M_X

• It can be written as

$$M_X^2 \frac{d\sigma_{diff}^{\gamma^* A}}{dM_X^2} = -\int \frac{d^2 x_{\perp}}{4 \pi} d^2 b_{\perp} \int_0^1 \frac{dz}{z (1-z)} |\Psi^{\gamma^* \to q\bar{q}}(\vec{x}_{\perp}, z)|^2 \frac{\partial S^D(\vec{x}_{\perp}, \vec{b}_{\perp}, Y, Y_0)}{\partial Y_0}$$

where S_D is the (exclusive) dipole S-matrix with the rapidity gap greater than Y_0 .

Evolution equation for diffraction

 $S^{D}(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y, Y_{0}) = 1 - 2N(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y) + N^{D}(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y, Y_{0})$ N^D $| N^D$ $\frac{\partial}{\partial Y}$ N^D N^D The "diffractive S-matrix" obeys the following evolution N^D NNequation (YK, E. Levin, 2000): $| N^D |$ N $\partial_Y S^D(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y, Y_0)$ $= \frac{\alpha_s N_c}{2 \pi^2} \int d^2 x_2 \frac{x_{10}^2}{x_{20}^2 x_{21}^2} \left[S^D(\vec{x}_{1\perp}, \vec{x}_{2\perp}, Y, Y_0) S^D(\vec{x}_{2\perp}, \vec{x}_{0\perp}, Y, Y_0) - S^D(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y, Y_0) \right]$

• The initial condition is given by

٠

$$S^{D}(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y = Y_0, Y_0) = S^{2}(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y_0) = [1 - N(\vec{x}_{1\perp}, \vec{x}_{0\perp}, Y_0)]^2$$

with the dipole amplitude N found from the standard nonlinear dipole evolution.

Can we measure high-mass diffraction at EIC?

- Need large rapidity gap and large mass M_x. This is tough at the EIC. $\sim^{\gamma\star}$
- Perhaps A-dependence may help reveal evolution signatures?
- Dependence on M_X may also signal effects of nonlinear small-x evolution and saturation (see A.D. Le, A. H. Mueller, S. Munier, 2021, 2103.10088 [hep-ph]; A.D. Le, 2103.07724 [hep-ph]).

 $\tau = \ln \frac{2}{r_{\perp} Q_s(Y)}$

Conclusions

- Low-mass diffraction: saturation signals may be found by studying the diffractive/total ratio and the eAu/ep double ratio versus M_x.
- Exclusive VM production: can find a saturation signal by studying $d\sigma/dt$ vs |t|.
- UPCs: A-dependence of the elastic VM production may tell us about nuclear effects and, possibly, saturation. (Is it perturbative?)
- High-mass diffraction: interesting, but can we do it at EIC? If yes, how? Studying the detailed structure of the final state with a rapidity gap may help us better understand and detect the onset of saturation.

Backup Slides

Black Disk Limit

• Start with basic scattering theory: the final and initial states are related by the S-matrix operator,

$$\left|\psi_{f}\right\rangle = \hat{S} \left|\psi_{i}\right\rangle$$

• Write it as

$$|\psi_f\rangle = |\psi_i\rangle + \left[\hat{S} - 1\right] \, |\psi_i\rangle$$

• The total cross section is

$$\sigma_{tot} \propto \left| \left[\hat{S} - 1 \right] \left| \psi_i \right\rangle \right|^2 = 2 - S - S^*$$

where the forward matrix element of the S-matrix operator is

$$S = \langle \psi_i | \, \hat{S} \, | \psi_i \rangle$$

and we have used unitarity of the S-matrix

$$\hat{S}\,\hat{S}^{\dagger}=1$$

Black Disk Limit

• Now, since $|\psi_f
angle = |\psi_i
angle + \left[\hat{S}-1
ight] |\psi_i
angle$

the elastic cross section is

$$\sigma_{el} \propto \left| \langle \psi_i | \left[\hat{S} - 1 \right] | \psi_i \rangle \right|^2 = |1 - S|^2$$

• The inelastic cross section can be found via

$$\sigma_{tot} = \sigma_{inel} + \sigma_{el}$$

• In the end, for scattering with impact parameter b we write

$$\sigma_{tot} = 2 \int d^2 b \left[1 - \operatorname{Re} S(b) \right]$$
$$\sigma_{el} = \int d^2 b \left| 1 - S(b) \right|^2$$
$$\sigma_{inel} = \int d^2 b \left[1 - |S(b)|^2 \right]$$

1	1	1	-
/	L	L	
-	r	٦	4

Unitarity Limit

- Unitarity implies that $1 = \langle \psi_i | \, \hat{S} \, \hat{S}^\dagger \, | \psi_i \rangle = \sum_X \langle \psi_i | \, \hat{S} | X \rangle \, \langle X | \hat{S}^\dagger \, | \psi_i \rangle \ge |S|^2$
- Therefore $|S| \leq 1$

leading to the unitarity bound on the total cross section

$$\sigma_{tot} = 2 \int d^2 b \, [1 - \operatorname{Re} S(b)] \le 4 \int d^2 b = 4\pi R^2$$

Notice that when S=-1 the inelastic cross section is zero and

$$\sigma_{tot} = 4\pi R^2 = \sigma_{el}$$

$$\sigma_{tot} = 2 \int d^2 b \left[1 - \operatorname{Re} S(b) \right]$$
$$\sigma_{el} = \int d^2 b \left| 1 - S(b) \right|^2$$
$$\sigma_{inel} = \int d^2 b \left[1 - |S(b)|^2 \right]$$

This limit is realized in low-energy scattering!

Black Disk Limit

• At high energy inelastic processes dominate over elastic. Imposing

$$\sigma_{inel} \ge \sigma_{el}$$
$$\operatorname{Re} S \ge 0$$

we get

• The bound on the total cross section is (aka the **black disk limit**)

$$\sigma_{tot} = 2 \int d^2 b \left[1 - \text{Re} S \right] \le 2 \int d^2 b = 2\pi R^2$$

• The inelastic and elastic cross sections at the black disk limit are

$$\sigma_{inel} = \sigma_{el} = \pi R^2 \qquad \sigma_{tot} = 2 \int d^2 b \left[1 - \operatorname{Re} S(b) \right]$$
$$\sigma_{el} = \int d^2 b \left| 1 - S(b) \right|^2$$
$$\sigma_{inel} = \int d^2 b \left[1 - |S(b)|^2 \right]$$

Notation

• At high energies

 $\operatorname{Im} S \approx 0$

while the dipole amplitude N is the imaginary part of the T-matrix (S=1+iT), such that

$$\operatorname{Re} S = 1 - N$$

• The cross sections are

$$\sigma_{tot} = 2 \int d^2 b \, N(x_\perp, b_\perp)$$

$$\sigma_{el} = \int d^2 b \, N^2(x_\perp, b_\perp)$$

$$\sigma_{inel} = \int d^2 b \left[2 \, N(x_\perp, b_\perp) - N^2(x_\perp, b_\perp) \right]$$

- We see that N=1 is the black disk limit. Hence $~N \leq 1$.