Jet Studies with ePIC

J. Kevin Adkins for the ePIC Collaboration Morehead State University RHIC Annual Users Meeting 2023 – Brookhaven National Laboratory August 2023

Supported in part by U.S. DEPARTMENT OF ENERGY Office of Science

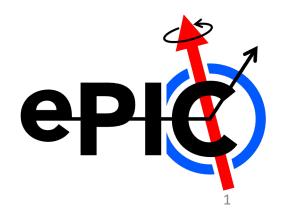
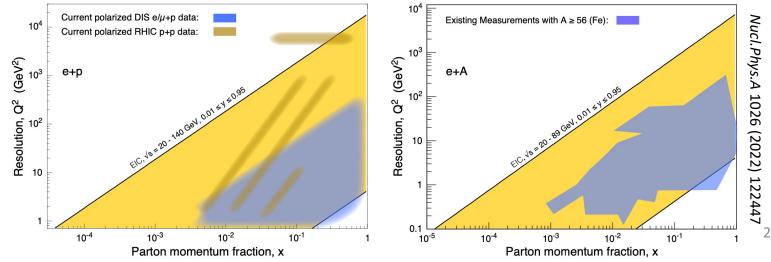
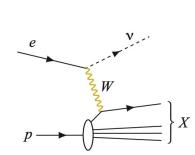
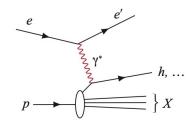
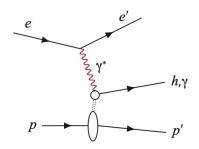



Image credit: bnl.gov/eic

Stepping Back: EIC Physics Goals

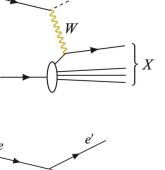


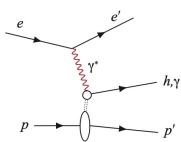

- The EIC aims to provide precision results over a broad kinematic range
 - The origin of mass and spin of the nucleon
 - The spin structure of the proton and atomic nuclei
 - Color confinement
 - Distribution of partons inside of nucleons in momentum and position space
 - How the dense nuclear environment inside of nuclei affects parton dynamics and correlations



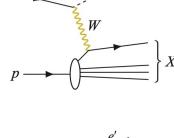
Physics Goals: Common Processes

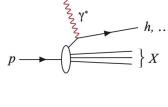
- The most common processes that probe channels to reach these goals are
 - Neutral current inclusive DIS
 - Charged current inclusive DIS
 - Semi-inclusive DIS (SIDIS)
 - Exclusive DIS

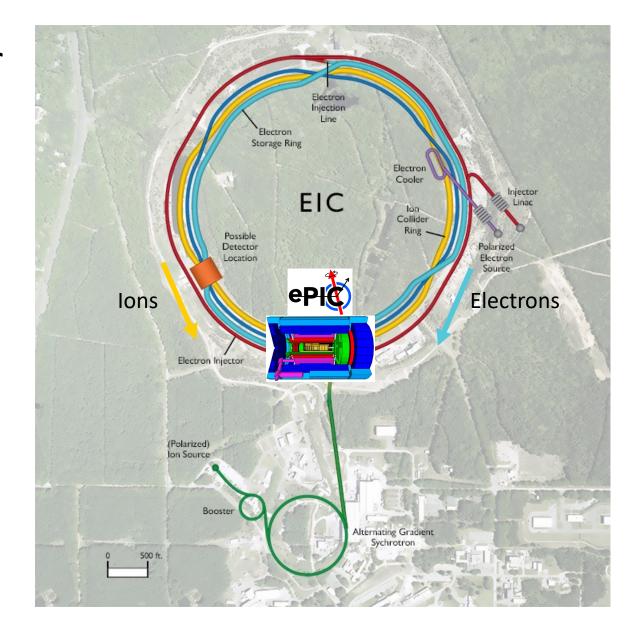


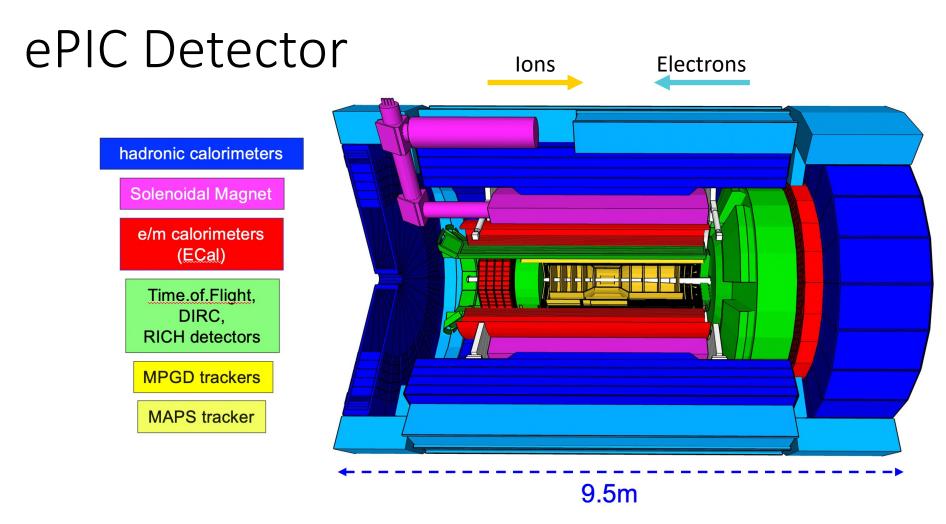


Nucl.Phys.A 1026 (2022) 122447


Physics Goals: Common Processes

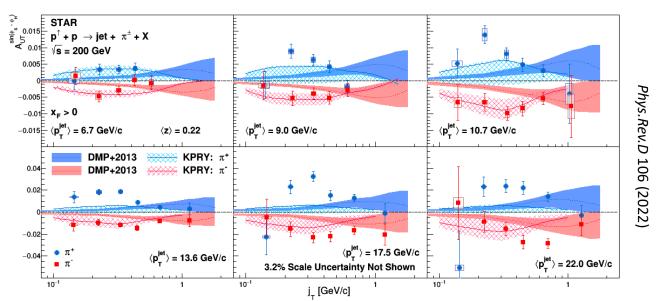

- The most common processes that probe channels to reach these goals are
 - Neutral current inclusive DIS
 - Charged current inclusive DIS
 - Semi-inclusive DIS (SIDIS)
 - Exclusive DIS
- Jets are excellent probes to study partons
 - They offer many other channels that provide useful input on the EIC physics goals!
 - Jet measurements will be an important complement to other analyses


Nucl.Phys.A 1026 (2022) 122447

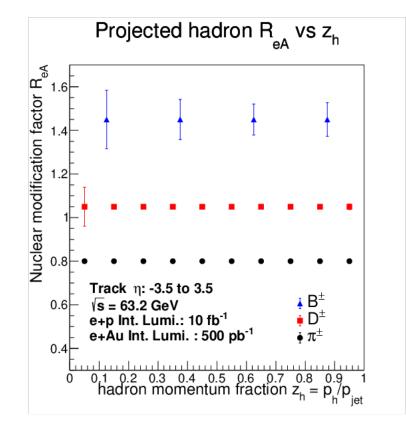


Electron Ion Collider

- Overlay onto existing RHIC site
- ePIC will be placed at IP6
- Ions travel counterclockwise
- Electrons travel clockwise



 Excellent tracking and calorimetry coverage lends itself to jet reconstruction and analyses


Opportunities with Jets in e-p Collisions

- 3D imaging of nucleons
 - Hadron-in-jet measurements (e.g. transversity and Collins FF)
 - Continue explorations of TMD evolution and universality
 - Azimuthal correlation between jet and scattered electron is sensitive to TMD PDFs
- Studies of hadronization and fragmentation via jet substructure

Opportunities with Jets in e-A Collisions

- e-A collisions give a look at how dense nuclear medium affects hadronization and fragmentation
 - Comparison to e-p will give insight into differences between vacuum and nuclear medium
 - Projections give high statistical precision on nuclear modification factor, R_{eA}
- Heavy flavor jet analyses will help constrain nuclear PDFs (nPDFs)

SciPost Phys. Proc. 8 (2022) 076

Jet & Heavy Flavor Working Group Goals

• Provide input and assistance on jet reconstruction

Jet & Heavy Flavor Working Group Goals

- Provide input and assistance on jet reconstruction
- Develop tools for jet analyses for simulation and future data

Jet & Heavy Flavor Working Group Goals

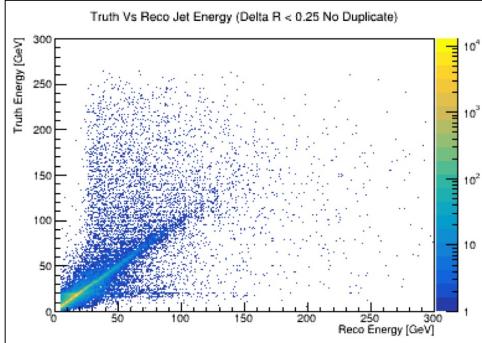
- Provide input and assistance on jet reconstruction
- Develop tools for jet analyses for simulation and future data
- Validation of the detector design to ensure it will meet physics goals
- Develop jet-related benchmarks to be used for validation of software updates (reconstructed vs. generated quantities)

Recent Accomplishments

- Jets are now reconstructed as part of the simulated data reconstruction package (ElCrecon)
 - Successful outcome from ElCrecon Jet Taskforce
 - All parameters are fixed

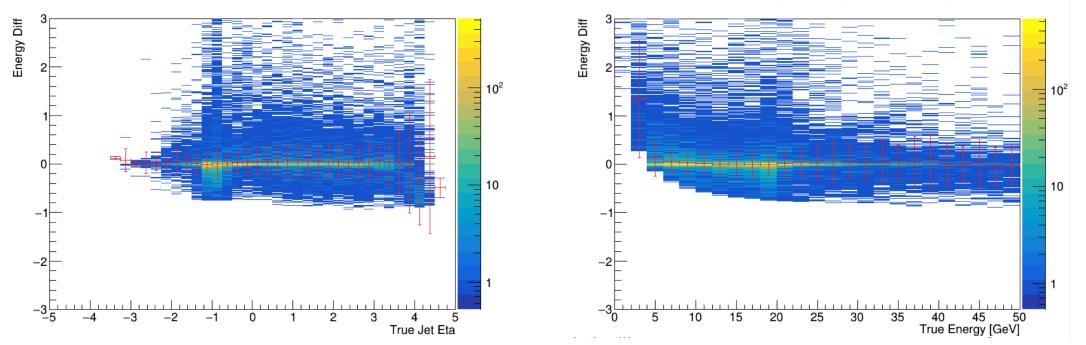
Parameter	Name	Value
Jet algorithm	m_jetAlgo	anti-kT
Jet recombination Scheme	m_recombScheme	E-scheme
Jet resolution parameter	m_rJet	1
Min. constituent pT	m_minCstPt	0.2 GeV/c
Max. constituent pT	m_maxCstPt	100 GeV/c
Min. jet pT	m_minJetPt	1 GeV/c
Area type	m_areaType	active
Max ghost rapidity	m_ghostMaxRap	3.5
No. of repeated ghost	m_numGhostRepeat	1
Area per ghost	m_ghostArea	0.001

Recent Accomplishments


- Jets are now reconstructed as part of the simulated data reconstruction package (EICrecon)
 - Successful outcome from ElCrecon Jet Taskforce
 - All parameters are fixed
- Jet methods updated so users can develop custom jet analysis

Parameter	Name	Value
Jet algorithm	m_jetAlgo	anti-kT
Jet recombination Scheme	m_recombScheme	E-scheme
Jet resolution parameter	m_rJet	1
Min. constituent pT	m_minCstPt	0.2 GeV/c
Max. constituent pT	m_maxCstPt	100 GeV/c
Min. jet pT	m_minJetPt	1 GeV/c
Area type	m_areaType	active
Max ghost rapidity	m_ghostMaxRap	3.5
No. of repeated ghost	m_numGhostRepeat	1
Area per ghost	m_ghostArea	0.001

Recent Accomplishments


- Jets are now reconstructed as part of the simulated data reconstruction package (ElCrecon)
 - Successful outcome from ElCrecon Jet Taskforce
 - All parameters are fixed
- Jet methods updated so users can develop custom jet analysis
- A first set of benchmarks using reconstructed simulation output
 - NC DIS 18x275 GeV (Q² > 100 GeV²)

Parameter	Name	Value
Jet algorithm	m_jetAlgo	anti-kT
Jet recombination Scheme	m_recombScheme	E-scheme
Jet resolution parameter	m_rJet	1
Min. constituent pT	m_minCstPt	0.2 GeV/c
Max. constituent pT	m_maxCstPt	100 GeV/c
Min. jet pT	m_minJetPt	1 GeV/c
Area type	m_areaType	active
Max ghost rapidity	m_ghostMaxRap	3.5
No. of repeated ghost	m_numGhostRepeat	1
Area per ghost	m_ghostArea	0.001

Benchmark Plots

(Reco - Truth)/Truth Jet Energy Vs True Eta (Delta R < 0.25 No Duplicate)

(Reco - Truth)/Truth Jet Energy Vs True Energy (Delta R < 0.25 No Duplicate)

- Plots of the energy difference ratio against other kinematic variables give the jet energy scale and resolution
 - Mean and width of each bin define the jet energy scale and resolution, respectively

Future Directions

- Modifications to the jet reconstruction from simulation output
 - Allow multiple ,or customizable, radii and other parameters

Future Directions

- Modifications to the jet reconstruction from simulation output
 - Allow multiple ,or customizable, radii and other parameters
- Improve jet reconstruction with the implementation of a particle flow algorithm
 - Reconstruction approach that focuses on physics objects rather than detector objects
 - Match tracks to calorimeter clusters and subtract track energy from the cluster energy

Future Directions

- Modifications to the jet reconstruction from simulation output
 - Allow multiple ,or customizable, radii and other parameters
- Improve jet reconstruction with the implementation of a particle flow algorithm
 - Reconstruction approach that focuses on physics objects rather than detector objects
 - Match tracks to calorimeter clusters and subtract track energy from the cluster energy
 - Avoids double counting energy in the jet
 - This simplifies backend analyses as it returns jets with properties closer to simulated jets, but adds frontend reconstruction complexity
 - Major area of research and focus for ePIC moving forward!

Summary/Conclusion

- Jets are a unique probe to provide input on the EIC physics goals
 - 3D imaging of nucleons
 - TMD FFs and PDFs
 - Dense nuclear medium effects
- ePIC's design lends itself very well to jet analyses
 - Excellent tracking and calorimetry coverage
- Jet and heavy flavor group is active and working toward development of tools and reconstruction algorithms

Summary/Conclusion

- Jets are a unique probe to provide input on the EIC physics goals
 - 3D imaging of nucleons
 - TMD FFs and PDFs
 - Dense nuclear medium effects
- ePIC's design lends itself very well to jet analyses
 - Excellent tracking and calorimetry coverage
- Jet and heavy flavor group is active and working toward development of tools and reconstruction algorithms
- If you are interested in joining this effort, email our convenors
 - There are plenty of tasks that need attention!

Olga Evdokimov: <u>evdolga@uic.edu</u> Brian Page: <u>bpage@bnl.gov</u>