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Vacuum bubbles

The vacuum in QED is characterized by virtual fluctuations

These virtual processes have interesting consequences:
• The Casimir effect
• Light-by-light scattering
• The Schwinger effect
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Status of experiments

Casimir effect1

Light-by-light scattering: evidence from quasi-real photons2

Schwinger effect: related positron production from multi-photon
light-by-light scattering3

• Upcoming: LUXE at DESY and FACET-II at SLAC (lasers + e− beams)
1Mohideen, Umar, and Anushree Roy. Physical Review Letters 81.21 (1998)
2ATLAS collaboration. Nature physics 13, no. 9 (2017)
3Burke, D., et al. Physical Review Letters 79.9 (1997) 4



The Schwinger effect

The vacuum is unstable in the presence of an electric field

The field strengths required for this are astronomical

2eE
!
mc

≈ 2mc2 ⇒ E ≈ 1018 V/m

• Experimental fields will be strongly inhomogeneous (XFEL
facilities at SLAC, DESY), and so the effects of inhomogeneities
must be understood.

• Prevailing computational techniques rely on approximations
(e.g. LCFA) which are known to be insufficient.

This is an open problem that requires new ideas. 5



Constant fields

These quantum corrections to Maxwell theory are encoded in the
effective action, Γ[A]

〈0out|0in〉 = exp

(
i

!Γ[A]

)

The imaginary part gives the pair-production rate

Pe+e− = 1− |〈0out|0in〉|2 ≈ 2

! ImΓ

Euler, Heisenberg (1936): constant electromagnetic fields

ΓEH(B)

V4
= −e2B2

8π2

ˆ ∞

0

ds

s2

(
coth s− 1

s
− s

3

)
e−m2s/(eB)

ΓEH(E)

V4
= −e2E2

8π2

ˆ ∞

0

ds

s2

(
cot s− 1

s
+

s

3

)
e−m2s/(eE)
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Pair-production rate

The residues at the poles give the imaginary part

ImΓEH(E)

V4
=

e2E2

8π3

∞∑

k=1

1

k2
exp

(
−kπm2

eE

)
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This is a non-perturbative phenomenon
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Non-constant fields: a single pulse

Exactly solvable inhomogeneous field configurations4:

B(x) = B sech2
(x
λ

)
, E(t) = E sech2

(
t

τ

)

Natural dimensionless parameter: γ =
m

eBλ
or γ =

m

eEτ

Connected by simultaneous rotations: B &→ ±iE and λ &→ ∓iτ

4Nikishov, A. I. Nuclear Physics B 21.2 (1970) 8



Standard approximations

The structure of the exact imaginary part is difficult to probe

Locally constant field approximation (LCFA):

ImΓ

V3

∣∣∣∣
LCFA

∼ τ
e2E2

8π3

(
eE

m2

)1/2 ∞∑

k=1

1

k5/2
exp

(
−kπm2

eE

) ∞∑

n=0

cn

(
eE

kπm2

)n

WKB approximation:

ImΓ

V3

∣∣∣∣
WKB

= τ
e2E2

8π3

(
eE

m2

)1/2
(1 + γ2)5/4 exp

(
−πm2

eE

2√
1 + γ2 + 1

)

It’s natural to consider ImΓ at fixed γ =
m

eEτ
(’t Hooft coupling)
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Pair-production from perturbation theory
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New idea: use resurgence to extract this pair-production rate from a
weak-field expansion of the magnetic effective action, Γ(B,λ)

Γ(B,λ)

V3
∼ λ

m4

3π2

∞∑

n=0

an(γ)

(
eB

πm2

)2n+4 (
eB

m2
→ 0

)
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Summing divergent series

Series in perturbation theory are generically asymptotic

f(g) ∼
∞∑

n=0

ang
n (g → 0), an ∼ n! (n → ∞)

• Zero radius of convergence

Borel (1899): reconstruct functions from their asymptotic data

∞∑

n=0

ang
n → B(s) =

∞∑

n=0

an
n!

sn

︸ ︷︷ ︸
Borel transform

→ S[f ](g) =
ˆ ∞

0
ds e−sB(sg)

︸ ︷︷ ︸
Borel sum

• B(s) has a non-zero radius of convergence → singularities

• Borel singularities ⇐⇒ non-perturbative physics
12



Borel singularities

If B(s) has no singularities on the positive real axis, then f(g) is
Borel summable

S[f ](g) = f(g)

If B(s) has singularities on the positive real axis, then f(g) is
non-Borel summable → our resummation is ambiguous

S[f ](g) = 1

2

(ˆ
C+

+

ˆ
C−

)
ds e−sB(sg)± 1

2

(ˆ
C+

−
ˆ
C−

)
ds e−sB(sg)
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Resurgence

E.g. a single pole: an ∼ σA−nn!

B(s) = σ

1− (s/A)
→ S[f ](g) ∼ ReS[f ]± iσπe−A/g

E.g. a single branch point: an ∼ σA−nn!

(
1 +

b1
n

+
b2

n(n− 1)
+ . . .

)

S[f ](g) ∼ ReS[f ]± iσπe−A/g
(
1 + b1g + b2g

2 + . . .
)

Large-order growth of gn ⇐⇒ low-order fluctuations of e−1/g

Observables are represented by resurgent trans-series

f(g) ∼
∑

n

ang
n =⇒ f(g) =

∑

nkl

ankl g
n
(
e−A/g

)k(
ln (−g)

)l

Resurgence: all non-pert. physics is encoded in the {an}
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How to fix an ambiguity?

Idea: use physical knowledge of the system to fix the ambiguity

2

! ImΓ = Pe+e− > 0

Constant fields:

ΓEH(E)

V4
= −e2E2

8π2

ˆ ∞

0

ds

s2

(
cot s− 1

s
+

s

3

)
e−m2s/(eE) Borel sum!

ImΓEH(E)

V4
= +

e2E2

8π3

∞∑

k=1

1

k2
exp

(
−kπm2

eE

)
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Finite perturbative knowledge

Question: what if we only know the first N perturbative coefficients?

• Ratio tests: an ∼ σA−nn!(1 + . . .) !

• Borel transform: BN (s) =
N−1∑

n=0

an
n!

sn !!! no singularities!

• Borel sum: SN [f ](g) ∼
N−1∑

n=0

ang
n ! no progress

First step: Padé approximation (poles and zeros accumulate to
branch points)

P[BN ] (s) =
PN/2(s)

QN/2(s)
-2 -1 1 2 3

-1.0

-0.5

0.5

1.0
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Single peak magnetic field configuration5,6

Γ(B,λ)

V3
= λ

m4

3π2

ˆ ∞

0

ds

eπm2s/(eB) − 1

×
[
dz

ds

(
1− 4z

3
+

z2

5
2F1

(
1, 1, 7

2 ; z
))

− (s → −s)−
(
8

3
s− 2γ

(
1 +

γ2

4
s2
)3/2

arcsinh
(γ
2
s
))]

z = −is− γ2

4 s2

Weak-field expansion:

5Dunne, Gerald, and Theodore M. Hall. Physics Letters B 419.1-4 (1998)
6Cangemi, Daniel, Eric D’Hoker, and Gerald Dunne. Physical Review D 52.6 (1995) 18



Modified Borel transform

Bose-like factor:

1

eπm2s/(eB) − 1
=

∞∑

k=1

e−kπm2s/(eB) “sum over instantons”

Euler-Heisenberg can be written in this form

ΓEH(B)

V4
=

e2B2

4π4

∞∑

k=1

1

k2

ˆ ∞

0
ds e−kπm2s/(eB) s

s2 + 1

“Modified Borel transform” (only one set of singularities)

Inhomogeneous case:

B(s, γ) = dz

ds

(
1− 4z

3
+

z2

5
2F1

(
1, 1, 7

2 ; z
))

− (s → −s)−
(
8

3
s− 2γ

(
1 +

γ2

4
s2
)3/2

arcsinh
(γ
2
s
))
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Inhomogeneous B field: new Borel singularities

Three pairs of complex conjugate branch points:

Growth rate:

an(γ) ∼ (−1)n|s1|−2nΓ
(
2n+ 3

2

)
WKB:
ImΓ

V3

∣∣∣∣
WKB

∝ exp

(
−πm2

eE
|s1|
)

The inhomogeneity causes new singularities to appear!
20



Darboux’s theorem

Sub-leading singularities would give rise to sub-dominant
exponential contributions

ImΓ(E, τ)

V3
∼

3∑

i=1

σi(γ)

[ ∞∑

n=0

∞∑

k=1

c(i)nk(γ)

(
eE

πm2

)n+δ(
e−πm2|si|/(eE)

)k
]

How to determine σi(γ), c(i)nk(γ), and δ? =⇒ Darboux’s theorem
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Exact large-order growth

Expansion about the origin:

B(s, γ) =
∞∑

n=0

an(γ)

Γ(2n+ 4)ζ(2n+ 4)
s2n+3

Expansion about each singularity:

B(s, γ) =
(
1− s

si

)3/2 ∞∑

n=0

b(i)n (γ)(s− si)
n + analytic

Large-order growth of coefficients: (non-trivial function of γ !)

an(γ)

Γ(2n+ 4)ζ(2n+ 4)
∼ 2

∞∑

l=0

(−1)l
(
2n+ 1

2 − l

− 5
2 − l

)(
b(1)l (γ)

s2n+3−l
1

+
b(2)l (γ)

s2n+3−l
2

+
b(1)3 (γ)

s2n+3−l
3

)
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Do these new singularities really contribute?

Small γ Large γ
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Full trans-series

Exact large-order growth → full trans-series structure of ImΓ(E, τ)

ImΓ(E, τ)

V3
∼

3∑

i=1

σi(γ)

[ ∞∑

n=0

∞∑

k=1

c(i)nk(γ)

(
eE

πm2

)n+δ(
e−πm2|si|/(eE)

)k
]

σ1(γ) = σ2(γ) =
τm4

8
√
π
(1 + γ2)5/4, σ3(γ) = − τm4

4
√
π
γ5/2

c(j)nk (γ) =
in

kn+5/2

Γ
(
n+ 5

2

)

Γ
(
5
2

)
(
b(j)n (γ)

b(j)0 (γ)

)

δ =
5

2

Resurgence confirmed to all orders!

• Perturbative coefficients encode all non-perturbative physics
24



LCFA and WKB approximations

ImΓ(E, τ)

V3
∼

3∑

i=1

σi(γ)

[ ∞∑

n=0

∞∑

k=1

c(i)nk(γ)

(
eE

πm2

)n+5/2(
e−πm2|si|/(eE)

)k
]

LCFA: set γ = 0 =⇒ s1(0) = 1, s2(0), s3(0) → ∞

τ
e2E2

8π3

(
eE

m2

)1/2 ∞∑

k=1

1

k5/2
exp

(
−kπm2

eE

) ∞∑

n=0

c(1)nk (0)

(
eE

kπm2

)n

!

WKB: consider only the closest singularity and its leading fluctuation

τ
e2E2

8π3

(
eE

m2

)1/2

(1 + γ2)5/4 exp

(
−πm2

eE

2√
1 + γ2 + 1

)
!

Full perturbative knowledge → full non-perturbative knowledge 25
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How much of this can be seen?

Assuming no knowledge of the exact effective action, we start with N

terms in perturbation theory

Γ(B,λ)

V3
∼ λ

m4

3π2

N−1∑

n=0

an(γ)

(
eB

πm2

)2n+4

With ∼ 10 terms, we can deduce the exact leading growth

27



Singularity structure

Borel transform: BN (s, γ) =
N−1∑

n=0

an(γ)

Γ(2n+ 2)
(|s1|s)2n+2

Padé-approximant: P[BN ](s, γ) =
PN (s, γ)

QN (s, γ)
(γ = 1)

28



Conformal map: looking under the cut(s)

Conformal map: separate out branch cuts7

s =
2w

1− w2
⇐⇒ w =

s√
1 + s2 + 1

At large γ we see the new singularities (N = 50)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

γ = 0.1 γ = 10

7Costin, Ovidiu, and Gerald V. Dunne. Physics Letters B 808 (2020). 29



Extrapolation from weak field to strong field

Weak field: Γ(B,λ)

V3
∼ λ

m4

3π2

∞∑

n=0

an(γ)

(
eB

πm2

)2n+4 (
eB

m2
→ 0

)

Strong field: Γ(B,λ)

V3
∼ λ

m4

3π2
· 1
3

(
eB

m2

)2[
ln

(
eB

m2

)
+ ln(2γ)− 12 lnA+

2

3

] (
eB

m2
→ ∞

)

Borel sum: S[ΓN ](B,λ)

V3
= λ

m4

3π2

(
eB

πm2

)2 ˆ ∞

0

ds

s
e−πm2|s1|s/(eB)P[BN ](s, γ)

0.010 0.100 1 10 100 1000

10-9

10-6

0.001

1

1000
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10-6

0.001

1
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Pair-production rate

Borel sum: Sθ[ΓN ](E, τ)

V3
= −τ

m4

3π2

(
eE

πm2

)2 ˆ ∞eiθ

0

ds

s
e−πm2|s1|s/(eE)P[BN ](−is, γ)

ImS[ΓN ](E, τ) =
1

2

(
S0+ [ΓN ](E, τ)− S0− [ΓN ](E, τ)

)

0.1 1 10 100

10-29

10-19

10-9

10

0.1 1 10 100

10-12

10-7

0.01

1000.00

With only 10 terms, we recover the exact pair-production rate with
remarkable precision
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Conclusion

• The Schwinger effect is a non-perturbative phenomenon which
is difficult to probe for inhomogeneous fields even at one-loop
order.

• Resurgence predicts that this information is encoded within the
divergence of weak field expansions of the effective action. !

• Using only a modest amount of perturbative data, we can
efficiently extract the strong field behavior and the
pair-production rate with a higher precision than both the LCFA
and WKB approximation.

• This technique offers a new approach to understand more
general field configurations in QED, higher loop contributions,
pair-production in dS/AdS backgrounds, etc.

33



Thank you

Questions?

This material is based on work supported by the National Science Foundation under Grant
DHE-1747453. Disclaimer: any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.
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Additional slides
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Scattering processes

Nonlinear inverse Compton scattering (NICS)

Nonlinear Breit-Wheeler

36



LUXE (Laser Und XFEL Experiment) at DESY8

Sketch of experimental set-up for NICS

8Abramowicz, H., et al. ”Letter of intent for the LUXE experiment.” arXiv preprint arXiv:1909.00860 (2019). 37



LUXE (Laser Und XFEL Experiment) at DESY

Sketch of experimental set-up for nonlinear Breit-Wheeler

Ee = 17.5GeV, Pγ = 30− 300TW, I = 1021 W/cm2, 30 fs pulses
38



FACET-II at SLAC9

Experimental set-up for NICS

Ee = 13GeV, Pγ = 10TW, I = 1020 W/cm2, 30 fs pulses

9Meuren, Sebastian. ”Probing strong-field qed at facet-ii (slac e-320).” Third conference on extremely high intensity laser physics (exhilp).
Vol. 7. 2019.
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