Imaging the Intrinsic and Emergent Scales of QCD with Colliders

Ian Moult

Yale

Colliders

Length Scales

• Colliders allow us to probe the shortest distance scales:

Dominated by the physics of the Strong Nuclear Force:
 Quantum Chromodynamics (QCD)

Emergent Behavior of QCD

• Microscopic degrees of freedom of QCD are quarks and gluons:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu a} + \sum_{f} \bar{q}_{f}(i\rlap{/}D - m_{f})q_{f} \qquad \qquad 0$$

QCD exhibits a variety of complicated emergent behavior:

Doubly Emergent Behavior

• All of nuclear physics emerges from this simple Lagrangian.

• An extremely rich theory at the forefront of current research.

The Complexity of QCD

• The degrees of freedom of QCD depend on the energy scale:

• To see quarks and gluons, we need a powerful microscope!

The Evolution of Collider Physics

Jets for Discovering the Gluon

The Modern Era

Jets at the LHC

 Obtaining a precise description of jet cross sections has been a significant driver of theory developments in Quantum Field Theory.

Enables precision tests of QCD and searches for new physics.

Jet Substructure!

Particle Colliders

• Particle colliders provide one of the most spectacular examples of a simple underlying theory producing remarkably complicated data sets.

$$\mathcal{L}_{\rm QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu a} + \sum_f \bar{q}_f (i\not\!\!\!D - m_f)q_f$$

• Microscopic dynamics encoded in Macroscopic energy flux.

The Frontiers of Quantum Chromodynamics: 5 Open Questions

Dynamics of Hadronization

• What are the dynamics of the hadronization process?

Clay Millenium Prize: Prove Confinement

How Strong is the Strong Force?

- What is the value of the strong coupling constant?
- The electromagnetic coupling is one of the best known natural quantities $\alpha_e = 0.0072973525693(11)$.
- There are currently large discrepancies in different extractions of the strong coupling.

How Heavy are the Quarks?

- What are the masses of the quarks?
- Electron mass well measured, $m_e = 0.51099895000(15)$ MeV.
- Quarks are never free ⇒ very hard to measure their masses!

How Heavy are the Quarks?

 The mass of the heaviest quark, the top quark, provides the leading uncertainty on the stability of the universe!

• Can only be produced and studied in colliders.

Extreme States of QCD Matter

• What are the phases of QCD matter?

 Required to understand the dynamics of the early universe and the collisions of neutron stars.

Beyond the Standard Model

• What is the nature of physics beyond the Standard Model?

Extracting the Answers from Colliders

• The answers are all encoded in collider energy flux!

Decoding Energy Flux

Correlation Functions

 In condensed matter physics or cosmology we decode the underlying dynamics using correlation functions.

• Can we achieve a similarly coherent picture of collider physics?

Defining the Problem

• What is a detector?

 To be able to understand colliders, we must understand what a detector is in the language of Quantum Field Theory.

Calorimeter Cells in Field Theory

 Calorimeter cells can be given a field theoretic definition in terms of light-ray operators.
 [Hofman, Maldacena] Korchemsky, Sterman] Ore, Sterman]

• From the perspective of QFT, jet substructure is the study of correlation functions of energy flow operators.

Towards the Real World

• Can this theoretical idealization possibly work in the messy real world?

• Can it provide new ways of understanding complex collisions?

Scaling Behavior of Quarks and Gluons

Scaling Behavior in QFT

• Why is jet substructure theoretically interesting?

• QFTs exhibit universal behavior as operators are brought together.

λ -point of Helium

The OPE Limit of Lightray Operators

- Energy flow operators admit an OPE!
- Jet Substructure is the study of the OPE limit of lightray operators.

[Hofman, Maldacena] [Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]

 Allows a new approach to jet substructure as the study of the symmetry and OPE structure of these operators.

Theory-Experiment Gap

• OPE scaling is the most basic prediction of QFT for jet substructure.

• Shockingly, still true as of 2022...

Open Data as the Bridge Between Theory and Experiment

[Komiske, Moult, Thaler, Zhu]

Open Data

 A primary driver of recent progress in jet substructure has been the availability of Open Data.

- Short-circuits the traditional path from formal theory development to collider physics applications:
 - Enables rapid transport of ideas from "theory world" to "real world".
 - Can illustrate that new approaches are phenomenologically viable.
 - Provides tests on real data for observables where standard simulations can't be trusted ⇒ learn new features of QCD.

Scaling Behavior in Jets

• The $\mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2)$ OPE inside high-energy jets!

 Beautiful scaling behavior in energy flux, provides a common language from superfluid helium to jet substructure!

The Spectrum of a Jet

• Different correlation functions should have different quantum mechanical scalings:

• Beautiful simplicity from complex collisions!

Experimental Verification

• Recent measurement by the STAR collaboration:

Beautiful validation of universal scaling across energies!

The Confinement Transition

The Confinement Transition

• Jets exhibit a transition from weakly coupled quarks and gluons to freely propagating hadrons: Occurs on a timescale of 10^{-23} s.

• Can it be directly imaged in asymptotic energy flux?

The Confinement Transition

 Energy correlators allow the hadronization process to be directly imaged inside high energy jets: transition from interacting quarks and gluons and free hadrons clearly visible!

The Confinement Transition

• Beautiful measurement by ALICE confirms this picture:

• Illustrates universality of the hadronization transition.

Imaging the Intrinsic and Emergent Scales of QCD with Jet Substructure

Unravelling the Initial Conditions

• Use jets as a calibrated probe of the initial condition.

Three Examples

• Weighing the Heaviest Quark

 Resolving the Scales of the Most Perfect Fluid

• Imaging Cold Nuclear Matter

Weighing the Heaviest Quark

[Holguin, Moult, Pathak, Procura]

Top Quark Mass

- The top quark mass determines the stability of the universe.
- Due to its large mass it can only be produced in collider experiments, and lives for $\sim 10^{-25}$ s, making it hard to measure.

Top Quark Mass Measurement

• Massive particles imprint their existence at a characteristic angular scale $\zeta \sim m^2/Q^2$.

• Optimistic for a precision top mass extraction at the LHC!

Imaging the Most Perfect Fluid

[Andres, Dominguez, Holguin, Kunnawalkam Elayavalli, Marquet, Moult]

The Quark Gluon Plasma

 Resolving the mystery of how asymptotically free quarks and gluons conspire to form a strongly coupled fluid is a primary goal of the nuclear physics program.

• This extreme state of matter can be produced in high energy colliders.

Imaging the Plasma

• Energetic quarks and gluons produced in the collisions shoot through the plasma, much like the classic Rutherford experiment.

 \bullet How can we see there was a $10^{-14} \mathrm{m}$ ball of plasma at the center?

Resolving the Scales of the QGP

QGP scales cleanly imprinted in two-point correlation!

• Resolve Femtometer scales from asymptotic energy flux!

Resolving the Scales of the QGP

 Detailed shape of the transition probes medium interaction and transport coefficients:

• Optimistic for significant progress with forthcoming measurements.

Heavy Quarks in the Medium

• Heavy quarks provide a theoretically clean probe of the medium.

• Correlators separately resolve medium and heavy quark mass scales.

Imaging Cold Nuclear Matter

[Devereaux, Fan, Ke, Lee, Moult]

The Future Electron Ion Collider

- The EIC will provide the first high energy collisions on large nuclei.
- Jets will play a key role in unravelling nuclear dynamics from asymptotic energy flux.

 A beautifully clean environment to apply all the developments of the past decade!

Imaging Cold Nuclear Matter

- EIC will provide high energy collisions on a variety of nuclei.
- Allows for the study of medium modification in a simplified setting.

• The size of the nucleus represents a clear physical scale that will be imprinted in the angular structure of the correlator.

Imaging Cold Nuclear Matter

• Nuclear sizes cleanly imprinted into correlators.

- Achieve femtometer resolution from asymptotic energy flux!
- Provides a common language from hot to cold QCD.

Summary

 Colliders allow us to access a wealth of exciting phenomena.

 Significant recent progress in decoding collider energy flux.

 Understanding the rich dynamics of the strong force remains a vibrant topic driving collider physics.

