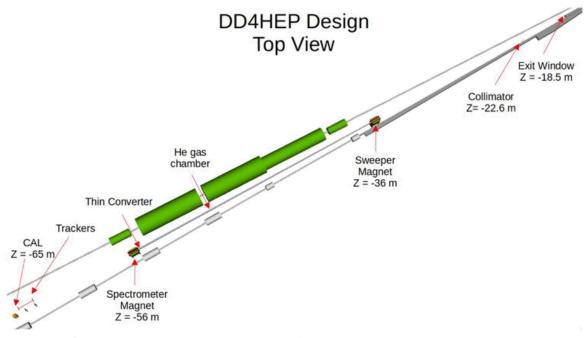

DETECTOR SUBSYSTEM COLLABORATIONS

- DSC representatives
- Technical Integration Council Meeting
- o April 28, 2023


Far Backward Pair Spectrometer Detector Collaboration

Designed to measure the luminosity via Bremsstrahlung photon conversions (e+e-) on a thin conversion foil. System composed of:

- Sweeper and Analysing Magnet
- Conversion foil
- He/Vacuum Chamber
- Trackers

DSC Reps

Calorimeters

The detector will provide complementary information needed for the precise luminosity determination (1% on absolute and 10⁻⁴ for relative).

Far Backward Pair Spectrometer Detector Collaboration

Subsystem Structure:

- Leader: Nick Zachariou (UoY)
- Technical Leader: Dhevan Gangadharan (UoH)
- Advisors and Collaborators: Bill Schmidke (BNL), Stephen Kay (UoY), Igor Korover(MIT), Georgios Krintiras (KU),
 Dan Watts(UoY), Mikhail Bashkanov(UoY), Aranya Giri(UoH), Alex Smith(UoY), Jaroslav Adam, Krzysztof
 Piotrzkowski.

Weekly meetings: Tuesday at 10 am ET.

Wiki page: https://wiki.bnl.gov/EPIC/index.php?title=Luminosity Pair Spectrometer

Extensive task list and investigations underway. Priority in technology of choice of Calorimeter design, tracker optimisation and technology, and optimisation of detector placement and magnetic fields of analysing and sweeping magnets.

(FB) High Rate Calorimeter DSC

DSC composition: Y. Ali, A. Kowalewska, K. Piotrzkowski-DSL/DSTL, M. Przybycien (AGH); J. Chwastowski (IFJ); J. Nam (Temple), I. Korover (MIT); N. Zachariou (x-link to Pair Spectrometer DSC); J. Adam (x-link to High Rate Tracker DSC)

This DSC is part of FarBackward consortium and is dedicated to design of calorimeters for detection of bremsstrahlung direct photons and low-Q² electrons, which will have to face event rates (well) in excess of 100 MHz.

The baseline fiber/tungsten spaghetti calorimeters are being studied in Monte Carlo simulations to assess the required radiation hardness of fibers (scintillator vs. fused silica) as well as to determine channel occupancies. In addition, fiber size and spacing will be selected to get optimal detector performances.

Impact of direct and secondary synchrotron radiation (SR) is also being investigated – that will allow to propose set of optimal SR filters (graphite vs. lead) as well as SR monitoring devices.

In Fall we will be ready to propose tentative calorimeter (conceptual) designs including associated photosensors, and this in turn will allow to tentatively propose readout electronics in concertation with two other FB DSCs.

agh.edu.pl

DSC Reps

ePIC, fECal DSC

Chinese Universities Consortia (Fudan University, Shandong University, South China Normal University, Tsinghua University)

- University of California EIC Consortium (UCLA, UCR)
- IUCF
- BNL

DSL - Huan Z. Huang (UCLA), Oleg Tsai (UCLA/BNL) DSTC - O. Tsai

Groups has extensive expertise and capabilities in executing large scale project in high energy and nuclear physics experiments around the world. (RHIC, JLab, CERN, Super KEKB).

Including recently built forward calorimetry systems for STAR and participating in sPHENIX WScFi barrel Ecal construction (same technology for fECal).

Participating Institution has extensive capabilities to curry large scale construction projects.

All are members of ongoing ePIC R&Ds. All groups are in eRD106 (fECal), and some are members of related R&D projects eRD109 and eRD110.

FAR-FORWARD SUBSYSTEM COLLABORATIONS

6

- One Detector Subsystem lead for all subsystems: Alex Jentsch
- Three technical contacts:
 - Yuji Goto Zero-Degree Calorimeter (goto@bnl.gov)
 - Zvi Citron B0 Tracker + EMCAL (zhcitron@bgu.ac.il)
 - Alex Jentsch Roman pots and Off-momentum detectors (ajentsch@bnl.gov)
- Cross-cutting FF + FB working group (for common integration issues): Nathaly Santiesteban and Simon Gardner.

Status summary

- All detector's primary technologies chosen.
- Heavy focus on engineering design and integration (for B0, RP, and OMD); optimization of setup for ZDC (# of imaging layers, more uniformity in design to for compensation).
- Impedance studies and iteration of engineering design (RP + OMD).
- Support infrastructure and integration with accelerator magnet (B0).
- Understanding of background and doses (B0 + ZDC, primarily).

AC-LGAD TIME-OF-FLIGHT DETECTOR

ePIC AC-LGAD TOF Detector System

- Barrel: 1 cm*500 um strips, ~10 m², ~2M channels
- Forward: 500*500 um² pixels, ~1.4 m², ~6M channels

TOF Detector Working Group

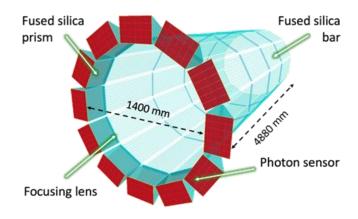
- Convener: Constantin Loizides (ORNL), Frank Geurts (Rice), Wei Li (Rice), Zhenyu Ye (UIC)
- DAQ contact: Tonko Ljubicic (BNL)
- Simulation contact: Nicholas Schmidt (ORNL)
- LGAD consortium, eRD109 (ASIC & Electronics), eRD112 (Sensor & Mechanics)

TOF Detector Subsystem Collaboration

- Nominated for DSL and Deputy DSL: Zhenyu Ye (UIC), Satoshi Yano (Hiroshima)
- In the process of defining working groups/packages, and collect institutional interests/responsibilities

* Stony Brook University | The State University of New York

- Institutions:
 - USA: Brookhaven National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Ohio State University, Purdue University, Rice University, University of California Santa Cruz, University of Illinois at Chicago
 - Japan: Hiroshima University, RIKEN, University of Tokyo
 - India: IIT Mandi, National Institute of Science Education and Research
 - Taiwan: National Central University, National Cheng Kung University, National Taiwan University
 - China: South China Normal University, University of Science and Technology of China


HPDIRC DSC

Kick-off meeting for hpDIRC DSC held last week

Slides and recording available (next May 5th, 8:30 am EST*) (https://indico.bnl.gov/event/19338/)

What happened:

- Defined scope of hpDIRC DSC
 - Merging coordination of DIRC activities at EIC: hpDIRC DSC / eRD103 / EICGEN
- Discussed and started procedure for leadership nomination and voting (Finalized today)
- Scheduled bi-weekly DSC meetings
- Reviewed preliminary breakdown of projects
- Members introduced themself.
- Defined priorities moving forward
- Announced hybrid DIRC@EIC Annual meeting in Jlab June 1-4th

Project Management

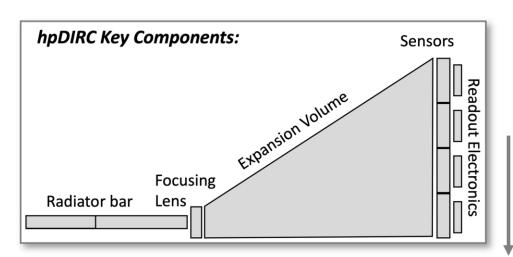
- > Coordination hpDIRC efforts (DSL, deputy)
- ePIC liaisons (tracking, readout, software)
- > TDR lead

Hardware

- > Components R&D, purchase/production, and QA (optics, sensors, electronics)
- Mechanical Systems (design of housing and support structure; assuring integration, developing procedure for installation)
- > Assembly of hpDIRC sections, installation, commissioning

Software

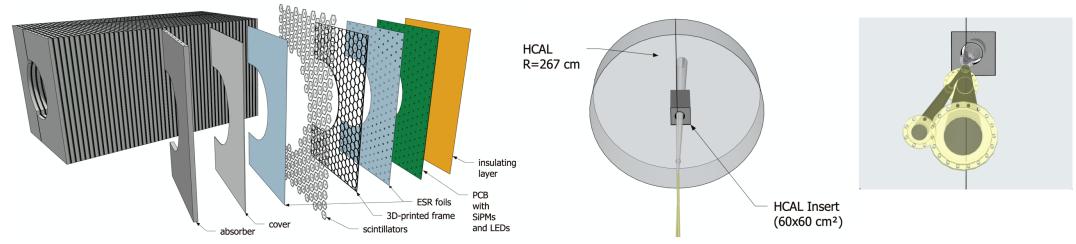
- > Offline: simulations (DD4HEP, F4A, Standalone), reconstruction
- > Online: FEE/DAQ, calibration, monitoring/slow control



HPDIRC DSC

What is happening:

DSC Reps


- Reviewing and adjusting path to TDR readiness, locking design, construction, and installation (what and when)
- > Reviewing committed, interested, and needed manpower
- > Getting ready for PID review by EIC Project in July 2023

				Design & R&D Production & Construction In												Insta	allation & Commissioning																		
				2023 2024					2025 2026						2027 2028						Т	202	29		2030			T	2031						
			Q1	Q2 (23 0	4 0	21 Q	2 Q:	3 Q4	Q1	Q2	Q3 (Q4	Q1 (Q2 Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4 (21 (22	Q3
┪																																$\overline{}$		\pm	
	Project Management																															\pm			
7		ordination (ePIC, eRD/EICGEN)			$\overline{}$	+	\pm	\top	+	+		$\overline{}$	\rightarrow	\rightarrow	$\overline{}$	+	+	_	$\overline{}$	-	+		$\overline{}$	_	\vdash	Н		+	 		\neg	+	\pm	\pm	-
		bsystem Lead DSSL		\vdash	+	+	+	+	+	+		\vdash	\rightarrow	\rightarrow	+	+	+	+	+	+	+	\vdash	+	-	-	\vdash		+	\vdash	\vdash	+	+	+	+	-
		ibsystem Contact DSSTC		\vdash	+	+	+	+	+	+		\vdash	\dashv	+	+	+	+	+	+	+	+	\vdash	+	\vdash	-	\vdash		+	-	\vdash	+	+	+	+	-
		·	-	\vdash	+	+	+	+	+	+		\vdash	+	+	+	+	+	+	+	+	+	\vdash	+	\vdash	\vdash	\vdash	_	+-	-	\vdash	+	+	+	+	-
	ePIC Liaiso		-	\vdash	+	+	+	+	+	+		\vdash	\rightarrow	\rightarrow	+	+	+	+	+	+	+	⊢	+	\vdash	\vdash	\vdash		+'	\vdash	\vdash	+	+	+	+	_
		Tracking	-	\vdash	+	+	+	+	+	+		\vdash	\rightarrow	\rightarrow	+	-	-	+	+-	+	+	\vdash	+	-	-	\vdash	_	+'	\vdash	\vdash	+	+	+	+	_
		Electronics, Readout, DAQ	_	\vdash	+	+	+	+	_	+		\vdash	\rightarrow	\rightarrow	+	+-	\vdash	+	+	\vdash	+	⊢	+	₩	-	\vdash		+'	\vdash	\vdash	\rightarrow	+	+	+	_
		Software/Computing	_	\vdash	+	+	+	_	-	-		\vdash	\rightarrow	\rightarrow	+	+	₩	-	\vdash	₩	-	⊢	+	₩	₩	\vdash	_	 	\vdash	\vdash	\rightarrow	\rightarrow	+	4	_
	Technical D	esign Report Lead		ш	_	+	\perp	\perp	\perp	_		ш	_	_	_	\perp	\vdash	_	\perp	_	_	┖	\perp	_	₩	Ш			\vdash	\sqcup	_	\rightarrow	\perp	4	_
						\perp																										\perp			
	Software																																		
	Online																																		
		FEE/DAQ																													\Box		\top	Т	
		Calibration				\top																П				П		\Box			\top	\neg	\top	Т	
		Monitoring / Slow Control			\neg	\top							\neg				П	Т		П		Г	Т	П		П		\Box		\Box	Т	\neg	\top	Т	Ī
													\neg																			\neg		Т	
	Offline: Sim	ulation																																	
		Full Simulation			Т	\top	Т	Т	Т			П	\neg		\neg	Т	Т		Т	П	Т	П	Т	П		П		\Box	П		\neg	\neg	\top	Т	
		Standalone Simulation			\neg								\neg			\top						П	Т			П		\Box			\neg	\neg	\top	T	
		Fast simulation			\neg								\neg				Т					П	\top			П					\neg	\neg	\top	\top	ī
		Design Studies			\neg	\top			\top				\neg			Т	Т				Т	П	Т	П		П		\Box	П		\neg	\neg	\top	Т	
																													П					Т	_
	Offline: Red	onstruction																																	
		Conventional Reconstruction			\neg	\top	\top		\top				\neg		\neg	\top	\top	Т		Т		Т	Т		-	П		\top		\Box	\neg	\neg	\top	Т	_
		Machine Learning Methods			\neg	\top	\top		\top				\neg	\neg	\neg	\top	\top	Т				Т	\top	-	-	П		\top	\Box	\Box	\neg	\neg	\top	T	_
		PID Algorithm			\neg																										\neg	\neg	\top	\top	_
		Offline Calibration/Alignment			\neg	\top	\top						\neg		\neg	\top	T					Т	\top	\top		П			\Box		\neg	\neg	\top	\top	_
						\top							\neg				\top				\top								\Box		\neg	\neg		т	_
T	Hardware																																		
T	Radiators																																		
		BaBar Bars			\neg	\top	\top		\top	\top		\Box	\neg	\neg	\neg	\top	\top	т	\top	-	\top	т	\top	$\overline{}$	-	П		\top		\Box	\neg	\top	\top	\top	_
		Properties/Specifications		\Box	\top	\top	\top		\top			\vdash	\neg	\neg	\neg	\top	-		T	1	T	$\overline{}$	\top	$\overline{}$	$\overline{}$	\vdash		$\overline{}$	\Box	\neg	\neg	\neg	7	τ	_
		Series Production, Liaison		\vdash	+	+	+	_	+	+		\vdash	\rightarrow	\rightarrow	+	+	+	+	+	\vdash	+	\vdash	+	-	-	\vdash		+	\vdash	\rightarrow	\pm	+	+	+	-
		QA		\vdash	+	+	+	+	+	+		\vdash	\rightarrow	-	-	+	_	+	+	\vdash	+	\vdash	+			\vdash	_	+	\vdash	\rightarrow	+	+	+	+	-
		un.			_	+	_	_		+			\rightarrow	_		_	+				+		_					+		_	+	+	+	+	-
	Sensors																															\pm			
	00110010	eRD110/eRD109 liaison			$\overline{}$	+	$\overline{}$	$\overline{}$	$\overline{}$	+			\rightarrow	$\overline{}$	-	$\overline{}$	+	-	$\overline{}$		+	-	$\overline{}$					\vdash	\vdash	$\overline{}$	\neg	+	\pm	\pm	-
		MCP-PMT R&D		\vdash	+	+	+	+	+	+		\vdash	+	\dashv	+	+	+		+	+	+	\vdash	+	\vdash	\vdash	\vdash		+	\vdash	\rightarrow	+	+	+	+	-
		HRPPD R&D		\vdash	+	+	+	+	+	+		\vdash	+	+	+	+	+	+	+	\vdash	+	\vdash	+			\vdash		\vdash	\vdash	\rightarrow	+	+	+	+	-
		Series Production, Liaison		\vdash	+	+	+	+	+	+		\vdash	\dashv	+	+	+	+	+	+	+	+	\vdash	+			\vdash		+	\vdash	\rightarrow	+	+	+	+	-
		QA		\vdash	+	+	+	+	+	+		\vdash	+	+	+	+	+	+	+	+	+	\vdash	+			\vdash		+	\vdash	\rightarrow	+	+	+	+	-
		Installation & Commissioning		\vdash	+	+	+	+	+	+		\vdash	\rightarrow	\rightarrow	+	+	+	+	+	+	+	\vdash	+	-	-	\vdash	_	+	\vdash	\rightarrow	+	+	+	+	-

The Calorimeter Insert for ePIC

Physics motivation similar to the HERA "plug" calorimeters:

Maximizes acceptance with high-granularity, covering 3<η<4, to improve measurement of event pT for inclusive DIS and jets.

Design key features:

- Maximum acceptance with each layer having a distinct shape to accommodate the beam-pipe crossing angle.
- Radiation-tolerant and future-proof design: SiPMs and tiles remain accessible for annealing & upgrades / phased construction.
- High granularity enabled by "SiPM-on-tile" technology (which was not in the baseline design)

The Insert is a <u>small, low-cost, and easy-to-build detector</u> that represents a "new experimental concept and technology that improves physics capabilities without introducing inappropriate risks".

We have presented this design and realistic simulation studies on numerous occasions, including to <u>GD/I</u>, in <u>collaboration meeting</u>, etc. So far, we have produced a design paper (<u>link</u>), a building-blocks testing paper (<u>link</u>), and carried out first test beam at JLab (<u>link to results</u>). Planned activities in near future include SiPM irradiation LBNL to determine optimal operating voltage and realistic noise for simulations, and beam tests with prototypes at JLab, FNAL and RHIC.

Interested parties in further developing and constructing this sub-detector include: UC Riverside, UCLA, and Indiana University.

Stony Brook University | The State University of New York

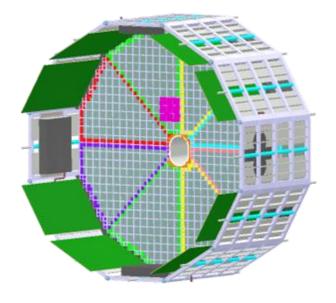
04/28/2023
Center for Frontiers in Nuclear Science

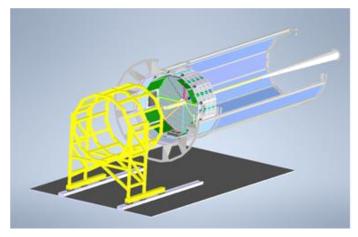
10

11

Consortium: Electromagnetic Precision Calorimetry

- One of the activities of the EEEMCAL consortium is the construction of the EPIC backward EMCal
- An NSF MRSI proposal is being submitted





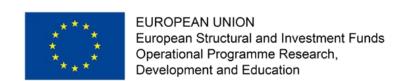
Center for Frontier in Nuclear Science

EEMCal in the context of ePIC DSCs

EIC-NSF Level XX (Draft)	Institution (Draft)	Major Funding	Major Team Member (Draft)				
Mechanical Structure	IJCLab-Orsay	International	Carlos Munoz-Camacho				
	MIT/MIT-Bates	DOE	Richard Milner				
Radiator	Charles U./Prague	International	Miroslav Finger				
	CUA	NSF	Tanja Horn				
Front-end electronics	Lehigh U.	NSF and DOE	Rosi Reed				
	FIU	DOE	Lei Guo				
Back-end readout	James Madison U.	NSF	Ioana Niculescu				
electronics, DAQ, full-	Ohio U.	NSF	Justin Frantz				
chain tests	JLab	DOE	Vladimir Berdnikov				
Prototyping, test stands, calorimeter assembly	AANL	International	Ani Aprahamian				
	U. Kentucky	NSF	Renee Fatemi				
	Abilene Christian U.	DOE	Larry Isenhower				
Simulation, reconstruction	W&M (also Ohio U.)	NSF and DOE	Cristiano Fanelli				

- Regular meetings on Fridays at 8AM ET (usually every 2-3 weeks as needed)
- Open to new collaborators/institutions!
- DSCL: Tanja Horn (CUA)
- DSCTC: Carlos Munoz (IJCLab)

Stony Brook University | The State University of New York


Center for Frontiers in Nuclear Science

Status of backward HCal DSC

Leszek Kosarzewski

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Inaugural Technical Integration Council Meeting 28.4.2023

Status of backward HCal DSC

Detector Subsystem Leader

Leszek Kosarzewski leszek.kosarzewski @gmail.com

Detector Subsystem Technical Contact

None - looking (Leszek Kosarzewski?)

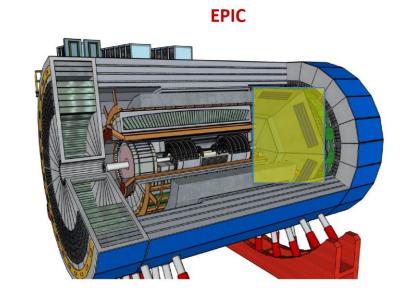
Czech Technical University in Prague

- Subhadip Pal (PhD student)
 - simulations, part time
- Alexander Prozorov (Finishing PhD)
 - simulations, part time, starting now

Brookhaven National Laboratory

 Peter Hamblen - mechanical design, starting in May

- Looking now for institutions to join and more people to participate
- Getting a lot of help from other people at BNL and CTU



dRICH

Compact cost-effective solution for particle identification in the high-energy endcap at EIC

dRICH Collaboration: Board of Istitutional Representatives

DSCL: appointed (acting as TC for the moment)

dRICH Office: Contact Persons of Developing Programs

Simulations, Mechanics, Gas Radiator Photo-detector, Front-end Asics, Data Acquisition Aerogel Radiators, Mirrors

Global layout Services

Internal structure

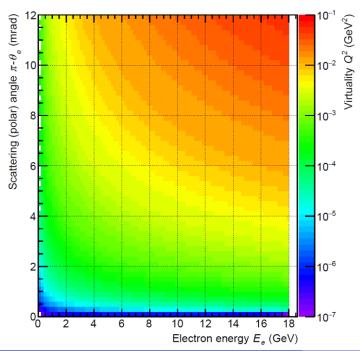
dRICH

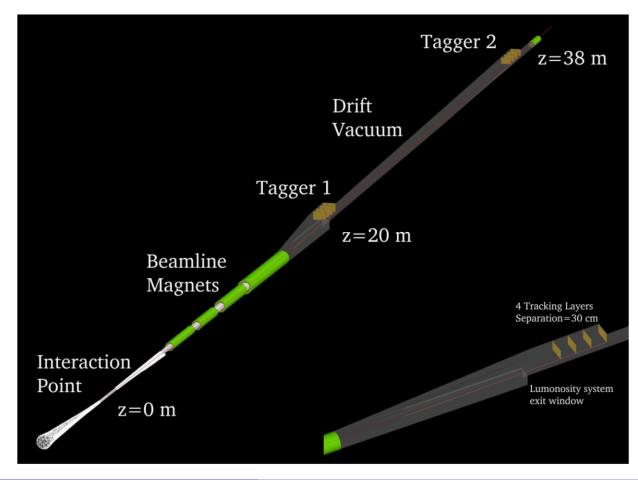
16

Restructuring activity under EPIC framework :

New mailing list: Eic-projdet-drich-l

New general meeting series: https://indico.bnl.gov/category/472


dRICH meetings		Enter your search term
	meetings of the dRICH DSC	
	There are 5 events in the future. Hide	
	May 2023	
	31 May dRICH Meeting - Geometry and Simulations NEW	
	24 May dRICH Meeting - Photo-sensors NEW	
	17 May dRICH Meeting - Radiators and Prototype NEW	
	10 May dRICH Meeting - Mechanics and Mirrors NEW	
	03 May dRICH Meeting - Readout Electronics NEW	
	April 2023	
	26 Apr dRICH Meeting - Geometry and Simulations	


FBKWD - High Rate Tracker

Low- Q^2 detectors Tagger 1 and 2, electrons at $Q^2 < 10^{-1}$ GeV² and calibration for luminosity

17

- DSL: Jaroslav Adam, jaroslav.adam@fjfi.cvut.cz
- DSTC: Simon Gardner, Simon.Gardner@glasgow.ac.uk

Jaroslav Adam, Simon Gardner FBKWD - High Rate Tracker April 28, 2023

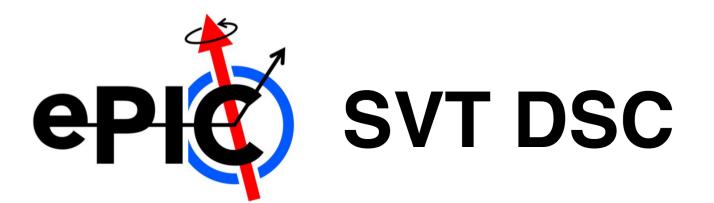
Stony Brook University | The State University of New York

Center for Frontier in Nuclear Science

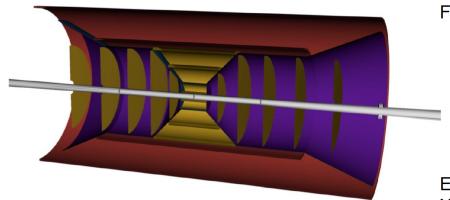
Indico: https://indico.bnl.gov/category/481/

Jaroslav Adam, Simon Gardner

DSC Reps


- Mailing list (same for all FBKWD groups): Eic-projdet-farback-I, [subscription link]
- Mattermost: https://eic.cloud.mattermost.com/main/channels/det-far-backward
- Instutites: Glasgow, Daresbury, Lancaster, Krakow, Prague, JLAB
- List of collaborators: Derek Glazier, Ken Livingston, Dima Manueski, Ros McGarrie, Mos Kogimtzis, Rob Apsimon, Krzysztof Piotrzkowski, Miroslav Myska, Yulia Furletova, Anna Kowalewska + students

FBKWD - High Rate Tracker


* Stony Brook University | The State University of New York

April 28, 2023

2/2

The Silicon Vertex Tracker Detector Subsystem Collaboration has come together to develop, construct, and operate a well-integrated, large-acceptance, low-mass, high resolution tracking and vertexing solution for ePIC based on Monolithic Active Pixel Sensors (MAPS) in 65 nm technology,

Five barrel layers at radii r_{x_0} and lengths L of

 $r_{0.05\%} = 36, 48, 120 \text{ mm}; L = 270 \text{ mm}$

 $r_{0.25\%} = 270 \text{ mm}$; L = 540 mm

 $r_{0.55\%} = 420 \text{ mm}$; L = 840 mm

Extended disk arrays, as space permits, with $X_0 \sim 0.24\%$ per disk

The three inner barrel layers will be constructed from ITS3 wafer-size sensors, while the outer layers and disks will make use of smaller area stitched sensors and more conventional supports.

ePI SVT DSC (continued)

This is a large-scale and challenging effort, requiring multiple areas of R&D

eRD113 – sensor development and characterization

eRD104 – services reduction

eRD111 – modules, mechanics, cooling, and integration

Several institutions are taking part:

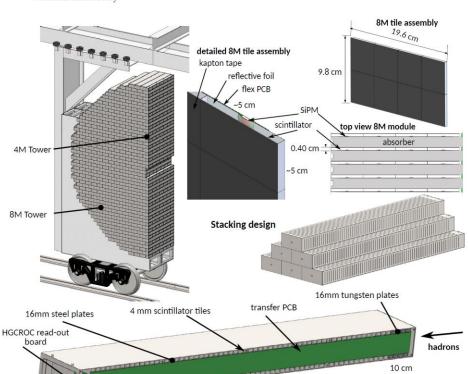
and more are joining. SVT DSC is open to and welcoming new collaborators.

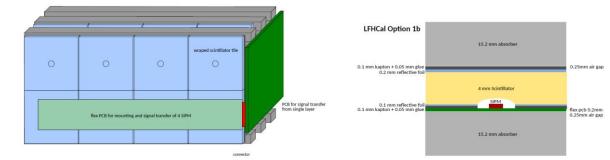
Contacts: Laura Gonnella (Birmingham, DSTC) – <u>laura.gonella@cern.ch</u>

Ermst Sichtermann (LBNL, DSL) – epsichtermann@lbl.gov

LFHCal

General Idea


- 4 layers of W (16 mm)-Sci plates (4mm)+
 61 layers of Steel (16 mm)-Sci plates (4mm)
- Multiple towers combined in one module to reduce dead areas, increase granularity
- Read-out:
 - ➤ SiPMs in each tile grouped in 7 signals per tower (signals combined from 10(5) Sci-plates)
 - readout position: after full HCal
- Modules of different sizes (8M, 4M) to maximize coverage & assembly efficiency


DSL: Friederike Bock

Read-out expert: Norbert Novitzky

Participating institutes:

ORNL, BNL, FNAL, ISU, GSU, Yale, UCR, UTK, Valpo

8M tower module - 20 cm x 10 cm x 140 cm

- 8 5 cm x 5 cm LFHCal towers

F. Bock (ORNL)

LFHCal

April 28, 2023

1/1

ePIC Backward RICH DSC

Brookhaven

INFN Genova

A Proximity-Focusing RICH for the ePIC Experiment - Conceptual Design Report -

(Draft 1.1)

Chiba

INFN Trieste

MSU Stony Brook

Duke

Temple

Glasgow

- Yale
- > Prefer to maintain a welcoming & flexible environment, with
 - a diverse institutional participation model, at least for the next 2+ years
 - a well-defined group of institutions committed to the construction phase

Current status

- A sufficiently detailed detector design exists
- A detailed P6-friendly costing sheet is composed
- A standalone modeling / reconstruction suite exists
- A draft CDR is available
- Next week: a first meeting
 - Proceed with a re-branding (new name, mailing list, Wiki page, etc)
 - Nominate a DSC Leader (and a Technical Contact?)
 - Discuss the organization and the institutional commitments
 - Re-assess the available workforce & resume the pre-review activities

Babak Azmoun¹, Deb Sankar Bhattacharva², Daniel Cacace¹, Helen Caines³, Chandradoy Chatterjee², Jaydeep Datta⁴, Abhay Deshpande⁴, Christopher Dilks^{5,6} James Dunlop¹, Alex Eslinger⁶, Prakhar Garg^{4,3}, Tom Hemmick⁴, Alexander Jentsch^{*}, Alexander Kiselev^{*,1}, Henry Klest⁴, Samo Korpar⁷, Peter Križan⁷ Jeffery Landgraf¹, Saverio Minutoli⁸, Charles-Joseph Naïm⁴, Mikhail Osipenko⁸ Brian Page*,1, Sanghwa Park9, Matt Posik10, Rok Pestotnik7, Andrej Seljak7, Prashanth Shanmuganathan¹, Nikolai Smirnov³, Bernd Surrow¹⁰, Makoto Tabata¹¹, Silvia Dalla Torre², Zhoudunming Tu*,1, Thomas Ullrich*,1,3, Jan Vanek¹, Anselm Vossen^{5,6}, Craig Woody¹, and Zhengqiao Zhang¹

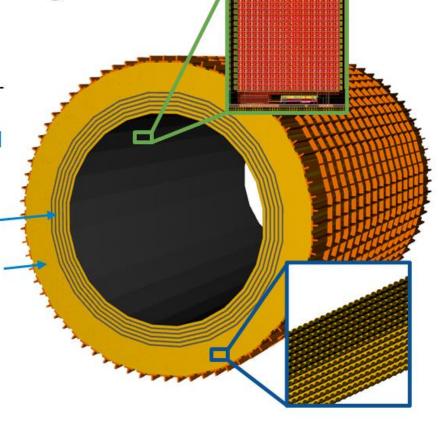
¹Brookhaven National Laboratory, Upton, New York 11973, USA ²INFN, Sezione di Trieste, Trieste, Italy[†] ³Yale University, New Haven, Connecticut 06520, USA Stony Brook University, Stony Brook, New York 11794, USA ⁵Duke University, Durham, North Carolina 27708, USA ⁶Jefferson Lab, Newport News, Virginia 23606, USA[‡] ⁷Ljubljana University and J. Stefan Institute, Ljubljana, Slovenia[§] ⁸INFN, Sezione di Genova, Genova, Italy ⁹Mississippi State University, Mississippi State, Mississippi 39762, USA ¹⁰Temple University, Philadelphia, Pennsylvania 19122, USA ¹¹Chiba University, Chiba, Japan¶

April 5, 2023

Imaging Barrel EM Calorimetry

Hybrid concept

DSC Reps


Imaging calorimetry based on monolithic silicon sensors AstroPix (NASA's AMEGO-X mission) -500 μm x 500 μm pixels NIM, A 1019 (2021) 165795

Scintillating fibers in Pb (Similar to GlueX Barrel ECal, 2-side readout w/ SiPMs) NIM, A 896 (2018) 24-42

6 layers of imaging Si sensors interleaved with 5 SciFi/Pb layers (starting with 4 layers)

Followed by a large section of SciFi/Pb section (can serve as inner HCAL)

Total radiation thickness for EMCAL of \sim 21 X₀ (only ~40 cm deep)

Energy resolution - SciFi/Pb Layers: 5.2% $\sqrt{E} \oplus 1.0\%$ Position resolution - Imaging Layers (+ 2-side SciFi readout): with 1st layer hit information ~ pixel size for y

24

Detector System Collaboration

Detector Subsystem Technical Contact

Si Layers: Jessica Metcalfe (<u>imetcalfe@anl.gov</u>)
Pb/ScFi: Zisis Papandreou (<u>zisis@uregina.ca</u>)

Detector Subsystem Lead: Maria Zurek interim (zurek@anl.gov)

Collaborators:

Argonne National Laboratory

University of California Santa Cruz

University of Connecticut

Duquesne University

Gangreung-Wonju National University

Kyungpook National University

Pusan National University

University of Seoul

Sejong University

Sungkyunkwan University

Yonsei University

Korea University

Hanyang University

University of Giessen

University of Manitoba

University of Regina

Mount Allison University

https://eic.cloud.mattermost.com/main/channels/det-cal-barrel-imaging

Ongoing Activities

In preparation to the change control process and beyond

Budget and Timeline

- Reworking Budget to be included in P6 (A. Bazilevsky)
- Identifying Long-Lead Procurement Items: SiPMs and Scintillating Fibers
 - Working on SiPM specifications based on simulations and GlueX/BCAL prototype data;
 coordinate with other EPIC SiPM orders
 - Contacted Scintillating Fiber vendors: cost, timelines and sample orders

High-Priority Simulation Tasks

- Coverage with forward and backward endcap ECals
- Possibility of shortening the depth of the Pb/ScFi part (to ~ 18X0) Cost and weight

High-priority Integration Tasks

- Defining DAQ and readout chain for AstroPix with collaboration of DAQ WG
- Mechanical integration of the barrel design with collaboration of ANL and Project Engineers
- Defining Internal Collaboration Structure

Next priorities for simulations (rough timeline)

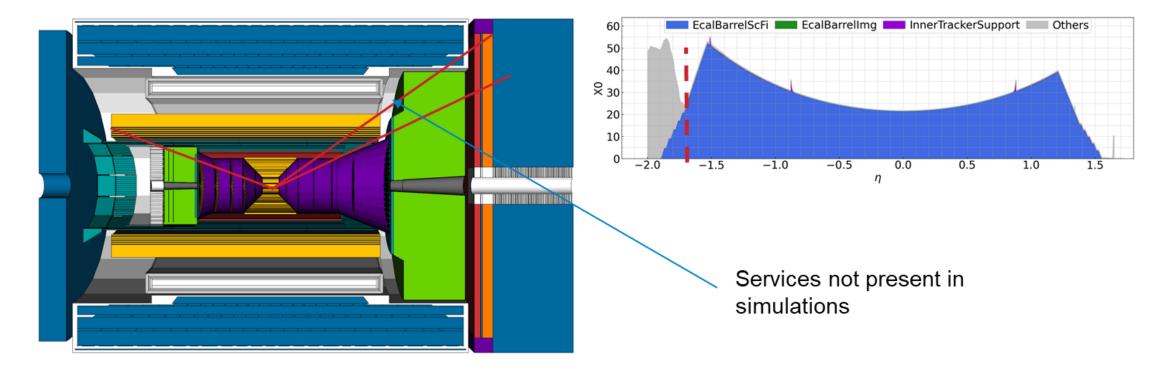

- Detailed simulation with light propagation in the ScFi (can be standalone)
- 2. Background studies

DSC Reps

- 3. More complete implementation of the silicon sensor staves and Si drawers
- 4. Impact of non-sensitive areas around AstroPix chips
- 2-sided readout for the Pb/ScFi
- 6. Optimization studies on the readout scheme
- Iteration between simulation and the mechanical model of the calorimeter
- Reconstruction studies (cluster matching, full event reconstruction, clustering algorithms, cluster merging, ...)
- Benchmark simulation against R&D tests
- 10. Performance impact of the imaging calorimeter on the hadronic calorimetry
- 11. Realistic calibration (collaboration-wide)

Q3 FY23

Q4 FY23



Integration with Forward/Backward Calorimeter

- 1. Can the Barrel ECal be shorten on the h-going side?
 - a. Purely from the calorimeter depth and coverage with backward ECal is looks possible
 - b. But! How well can we reconstruct e/γ in backward ECal with all the material in front
 - c. How many e/γ is in this area?

Stony Brook University | The State University of New York

04/28/2023