

MPPC

Per SiPM (/16): 0.00013 – 1.1 GeV S14160-3010PS expected – measured expected Specifications Package type Surface mount type Number of channels 1 ch linearity Effective photosensitive area / ch $3 \times 3 \text{ mm}$ Number of pixels /ch 89984 Contact us > Pixel size 10 µm 290 to 900 nm Spectral response range 460 nm Peak sensitivity wavelength (typ.) Dark count/ch (typ.) 700 kcps Low gain! Terminal capacitance/ch (typ.) 530 pF (Measurements compatible with 1.8×10⁵ Gain (typ.) Hamamatsu's number)

•

Linearity tests of Hamamatsu high-density SiPMs

(Ideal) dynamic range for backward ECAL:

0.05 – 18 GeV (1:360) - cluster

0.005 – 18 GeV (1:3600) – crystal

Measured with calibrated LED and filters (20 ns squared pulse)

universite

CNIS

FACULTE

DORSAY

DES SCIENCES

Ъ

Université de Paris

04/19/2023

Meeting on SiPM specs for ePIC calorimeters

Tests of Matrix Configurations

Configurations

- Single SiPM (JLab FEG)
- Two SiPMs (INFN-GE)
- 3x3 Array (JLab FEG)
- 4x4 Array (JLab FEG and Crytur)

Testing for prototype beam tests

- Single PE Test: 5-7 mV amplitude for PE and 600pW of area
- Cosmic Test to set the amplitude to cover the dynamic range and to tune the amplification (avoid saturation)

For the JLab FEG designs the PCB consists of a stack of two PCBs. The bottom board contains the SiPM and a thermal correction circuit for the SiPM bias voltage. The top board contains a pre-amp circuit, coaxial connector and 4-pin ribbon connector for low voltage power and SiPM bias.

CUA, AANL, JLab, Crytur, and EEEMCAL Consortium + eRDXXX

Testbench tests of JLab arrays laser pulse response, signal linarity, dynamic range,

single cell tests

Link to full report

3x3 SiPM Signal Vs Filter Optical Density With 1kHz Laser Pluses

OpAmp Signal Voltage Vs Time

The scaling of the SiPM response amplitude from 1 to 9 SiPMs is a factor of 8

Compare Hamamatsu S14160-3015 and S14161-6015

S14160-3015 characteristics

- 3 mm x 3 mm
- PDE 32% (420 nm)
- 15 µm microcells
- Anode capacitance 530 pF
- Dark count rate 700 kcps (typ.)
- VOP variation within reel ±0.1V (± 8% gain)

- ➤ 16 pcs to fill 20 mm x 20 mm
- ➤ Active fill: 36% of area
- Rough computation for # activated cells for 15GeV deposited in crystal: 1588/SiPM
- Expected Integral Non-linearity at 15GeV: 1.26%

- Only fit 4 14160-6015 units on 20 mm x 20 mm
- Comparison with 16 14160-3015 (3 mm x 3 mm)

Same

- Cell size
- PDE
- Gain
- Sensitive area
- Operating voltage

Different

- Anode capacitance
 - 530 pF (3015) vs. 2500 pF (6015)
- Dark count rate (typ.)
 - 700kcps (3015) (x16 = 11.2 Mcps)
 - 3 Mcps (6015) (x4 = 12.0 Mcps)

CUA ordered S14161-6010 (50) and S14160-6015 (50) for testing – first items expected in late spring, the next batch in early fall

Tests of Matrix Configurations with beam at JLab

CUA, AANL, JLab, Crytur, and EEEMCAL Consortium + eRDXXX

(b)

Assembly of SiPM and crystal/glass blocks

(d)

(e)

(c)

Fig.13: 3x3 Prototype with SiPM readout system in Hall-D. The prototype aligned the way that beam is heating in the center

Preamplifier and power supply.

Measured energy resolution is consistent with that of the same 3x3 array with PMT readout

Preliminary results

Energy deposition in the central module 5 and in the full prototype (3x3). The energy is given in units of flash ADC counts.

ADC amplitudes, sampled with a rate of 250 MHz, are summed up in the 64 ns wide window (16 samples x 4 ns = 64 ns)

Preliminary energy resolution for the 3x3 matrix ~2%

Hall-D tests Spring 2023: RO performance

- * Scintilex glas blocks
- 5x5 2x2x40 cm3 blocks
- SiPM: 2x 6x6 mm2, 50um, Hamamatsu, mounted on a PCB
- Installed in Hall-B CR and on Hall-D PS e+/e- beam
- Custom preamp board + custom bias board (transimpedence preamp developed for HI and CLAS12 FT APD readout with reduced gain)
- During tests, we noticed some instabilities studied in details after-while

V_{bias} (-> sipm gain) dependence on drained current (severe issue for CAL resolution)

- The Proto-Cal energy resolution depends on data rate (?!)
- This issue is traced back to the sipm biasing circuit

Hall-D tests Spring 2023: RO performance

- * Scintilex glas blocks
- 5x5 2x2x40 cm3 blocks
- SiPM: 2x 6x6 mm2, 50um, Hamamatsu, mounted on a PCB
- Installed in Hall-B CR and on Hall-D PS e+/e- beam
- Custom preamp board + custom bias board (transimpedence preamp developed for HI and CLAS12 FT APD readout with reduced gain)
- During tests, we noticed some instabilities studied in details after-while

V_{bias} (-> sipm gain) dependence on drained current (severe

- A combination of large number of firing cells with a high rate causes a large current request that (may) affects the Vbias changing the sipm working point (gain)
- In case of not periodic input (e.g. Poissonian) this degrades the resolution

2

Conclusions

INFN

• The drop in sipm gain is visible at a different rate, depending on the number of firing cells (Npe)

Streaming readout

Hall-D tests Spring 2023: RO performance

- * Scintilex glas blocks
- 5x5 2x2x40 cm3 blocks
- SiPM: 2x 6x6 mm2, 50um, Hamamatsu, mounted on a PCB
- Installed in Hall-B CR and on Hall-D PS e+/e- beam
- Custom preamp board + custom bias board (transimpedence preamp developed for HI and CLAS12 FT APD readout with reduced gain)
- During tests, we noticed some instabilities studied in details after-while

V_{bias} (-> sipm gain) dependence on drained current (severe

- A combination of large number of firing cells with a high rate causes a large current request that (may) affects the Vbias changing the sipm working point (gain)
- In case of not periodic input (e.g. Poissonian) this degrades the resolution

Conclusions

- The drop in sipm gain is visible at a different rate, depending on the number of firing cells (Npe)
- The resolution gets worse when larger Npe is involved. The effect is anticipated in case of Poissonian rate

3

7