Status update of nHCal

Leszek Kosarzewski

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

EPIC Calorimetry 19.4.2023

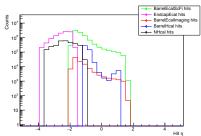
The work was also supported from European Regional Development Fund-Project through International Mobility of Researchers project of the Ministry of Education, Youth and Sports of the Czech Republic, Project No. CZ.02.2.69/0.0/0.0/18.053/0016980

Outline

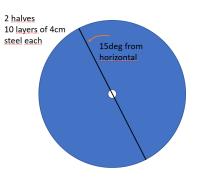
Status update

Mechanical design

Options for sector/tile arrangement

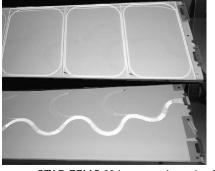

Readout and electronics

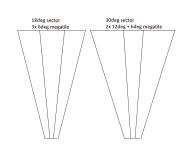
- With help of Alexander we prepared a WBS excel sheet and cost estimates
 - Used existing estimates and followed example of LFHCAL
 - Plan to unify electronics between nHCal an LFHCAL
- Looking for more people and institutions to join DSC.
 - · Started discussions with potential groups
 - Maybe share work with LFHCAL group?
 - DSTC needed for nHCal
- Work in progress on position resolution study using combined backward HCal and EMCal (needs check before presenting)
- Work in progress on study of material an acceptance overlap between barrel and backward HCal and EMCal
- Need coordination on magnetic field interference from solenoid



Brycecanyon

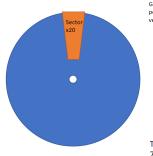
- ullet Checked for both Arches and Brycecanyon with simulated hits from $p=1\,\mathrm{GeV}$ neutrons
- No visible gap for both

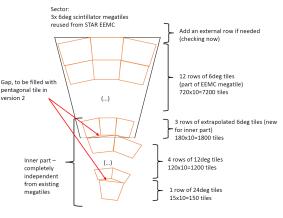

Steel assembly



- Follows example of STAR EEMC
 - https://doi.org/10.1016/S0168-9002(02)01971-X
- Mechanical engineer at BNL will be available to partly work on the design (including tile mounts) starting in May
- Pushed cradle design to CD-3A
- Cost assumed at $20 \times 60 k$ \$
 - \bullet assumed no change of cost when extending inner radius to $12.4\,\mathrm{cm}$ from $19\,\mathrm{cm}$ or $70\,\mathrm{cm}$
- 2 options:
 - \bullet Cylindrical shape with a constant radii $r_{min}=12.4~\mathrm{cm}$ and $r_{max}=275~\mathrm{cm}$
 - Projective shape with $r_{min}=12.4~{
 m cm}$ and $r_{max}=275~{
 m cm}$ (each layer has different shape and extends outwards)

Existing STAR EEMC megatiles

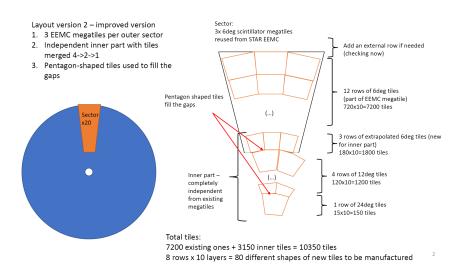



- STAR EEMC 30deg sector is made of 2x outer 12deg megatiles and 6deg "keystone" megatile
 - Each megatile has 12 tiles
 - Can 12deg megatile be cut into 2x 6deg megatiles?
- Option 2: Make 18deg sector out of 3x 6deg megatiles
 - Are megatiles the same shape? Any technical drawings available?
- Tiles are optically isolated via machined isolation grooves (follow the same principle for new extended tiles)
- ullet WLS fibers attached in σ -shaped grooves, leading optical signal to the back of the megatile and in the outer direction
- May rotate each layer by a small angle so that gaps between the tiles are covered

Options for sector/tile arrangement - version 1

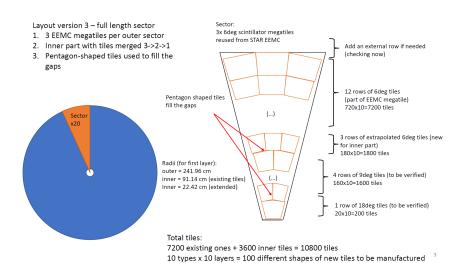
Layout version 1 - implemented now

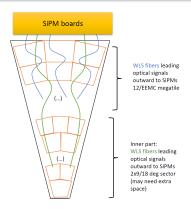
- 1. 3 EEMC megatiles per outer sector
- 2. Independent inner part with tiles merged 4->2->1
- 3. Triangular gap between transitions



Total tiles:

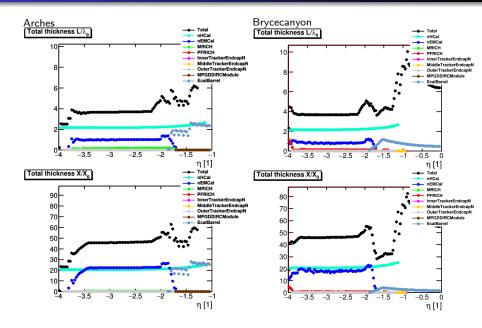
7200 existing ones + 3150 inner tiles = 10350 tiles 8 rows x 10 layers = 80 different shapes of new tiles to be manufactured

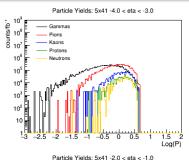

19.4.2023 L. Kosarzewski FNSPE CTU Prague

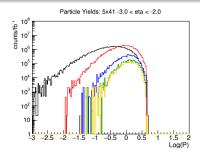

Options for sector/tile arrangement - version 2

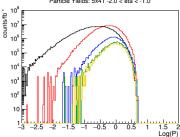
19.4.2023 FNSPE CTU Prague

Options for sector/tile arrangement - version 3

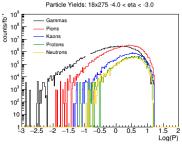


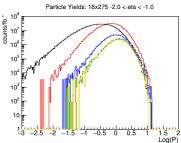

- WLS fibers lead optical signal to SiPM boards (preferably of equal length)
 - 12 SiPM (S14160-1315PS) per board corresponding to existing megatile
 - https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc_mppc-array/S14160-1315PS.html
 - Inner part: 18 tiles, 9 per board (2 boards)
- 2 options for mounting FEEs:
 - Outside, parallel to each layer (covered by material from barrel)
 - Behind nHCal (covered by less material, need longer fibers)

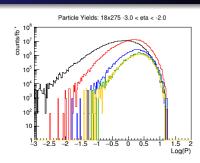

- Revise the design of the tiles and sectors
 - A few solutions proposed an discussed
- More studies coming soon!


BACKUP

Jet particle distributions






• Pythia simulation by Brian Page

Jet particle distributions

• Pythia simulation by Brian Page

