HJET beam pipe

Zhengqiao Zhang

The layout of the HJET in IR4

Beam size: $10^*\sigma_x = 0.98$ cm; $10^*\sigma_y = 0.23$ cm; • We need dipole and drift space to separate the breakup fragments from the beam line.

the beam He3 break up;

The layout of the HJET in IR4

The z position of the protons and neutrons that hit the beam pipe.

- Default beam pipe diameter: 7.0cm;
- Beam size before YI3_TQ4: $10*\sigma_x = 0.98$ cm; $10^*\sigma_y = 0.23$ cm;
- Most of the protons and neutrons hit the beam pipe between WARM3D0 and YI3_TQ4;

- We need to tag the events that only the beam He3 break up;
- The sensor is located in front of YI3_TQ4

Default beam pipe:

Optimized beam pipe:

The detecting ratio of protons and neutrons in only beam he3 break up case

No beam pipe:

- The ratio of events that have at least one proton in the sensor: 0.993876
- The ratio of events that have at least one neutron in the sensor: 0.577984

Beam pipe with different configurations:

Material		Proton ratio	Neutron ratio
Aluminum (2mm)	Default one	0.53096	0.205882
	Optimized	0.832817	0.20743
Aluminum (1mm)	Default one	0.667183	0.393189
Aluminum (mm)	Optimized	0.910217	0.386997
Dorullium (Omm)	Default one	0.678019	0.371517
Berymunn (Zmm)	Optimized	0.890093	0.335913
Beryllium (1mm)	Default one	0.787926	0.518576
	Optimized	0.928793	0.458204

- Here I used energy > 10 GeV cut to select the protons and neutrons;
- There are secondary produced particles like pions that may hit the sensor, shall we set a total deposit energy cut instead of proton or neutron energy cut?
- Increasing D1 would help to improve the neutron detecting ratio;

Optimized beam pipe:

WARM3_D0

Beam pipe with different configurations:

	Has proton	Has n
Aluminum (2mm) D0 = 7 cm; D1 = 30 cm;	0.856	0.6
Aluminum (1.5mm) D0 = 7 cm; D1 = 30 cm;	0.861	0.0
Aluminum (1.0mm) D0 = 7 cm; D1 = 30 cm;	0.870	0.0
Aluminum (2.0mm) D0 = 5 cm; D1 = 30 cm;	0.918	0.0
Aluminum (2.0mm) D0 = 4 cm; D1 = 30 cm;	0.927	0.0
Aluminum (2.0mm) D0 = 4 cm; D1 = 20 cm;	0.873	0.

The detecting ratio of protons and neutrons in only beam he3 break up case

- An optimized beam pipe design can significantly increase the proton detecting ratio;
- Increasing D1 would help to improve the neutron detecting ratio;
- Beryllium works better than Aluminum;