

students, faculty and opportunities for collaboration

James Battat (on behalf of my colleagues)

Wellesley College (founded 1870)

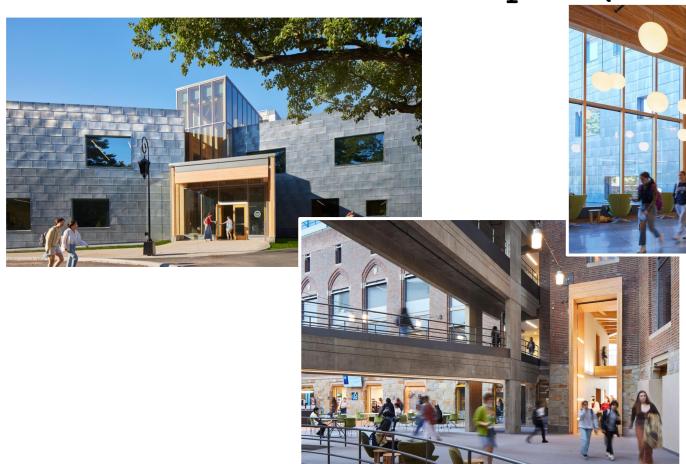
13 miles west of Boston

Undergrad liberal arts college

"provide an excellent liberal arts education to women who will make a difference in the world."

2,400 students

Need-blind admissions 50% students of color 25% first-gen 20% low-income

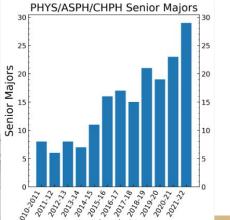

Cross-registration

MIT Olin (engineering) Babson (business)

Emerging Research Institution

ERI, but not an MSI Eligible for DOE RENEW & FAIR

New Science Center/Complex (2022)


Wellesley physics students, then and now

Growing physics major

2012: 6 majors/yr2022: 29 majors/yr

Bachelors degrees, women in physics, per year (2017-2021)

	Institution	Highest Degree	Women per year
1	University of Washington	PhD	35
2	UC Berkeley	PhD	28
3	MIT	PhD	24
4	Illinois Urbana/Champaign	PhD	24
5	UCLA	PhD	20
6	Wellesley College	Bachelors	18
7	UC Santa Cruz	PhD	18
8	Rutgers	PhD	17
9	U. Texas, Austin	PhD	16
10	Colorado School of Mines	PhD	16

Bachelors degrees, women in physics, per year (2017-2021)

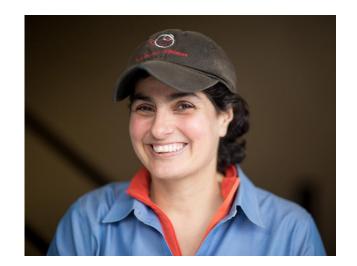
	Institution	Highest Degree	Women per year	Total per year
1	University of Washington	PhD	35	177
2	UC Berkeley	PhD	28	125
3	MIT	PhD	24	73
4	Illinois Urbana/Champaign	PhD	24	146
5	UCLA	PhD	20	78
6	Wellesley College	Bachelors	18	18
7	UC Santa Cruz	PhD	18	69
8	Rutgers	PhD	17	76
9	U. Texas, Austin	PhD	16	90
10	Colorado School of Mines	PhD	16	65

Data: Patrick Mulvey, AIP

Wellesley physics alumnae you may know

Persis Drell '77

2017 - 2023 Provost, Stanford 2014 - 2017 Dean of Engineering, Stanford 2007 - 2012 Director, SLAC


Pam Melroy '83

2021 - now NASA Deputy Administrator

Astronaut
2007 STS-120 Mission
Commander
2002 STS-112 Pilot

STS-92 Pilot

2000

Nergis Mavalvala '90

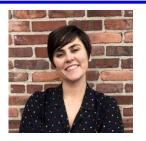
2020 - Dean MIT School of Science2010 MacArthur Fellow

Leading member of LIGO

Recent alums (e.g.)

12 of my lab alumnae who graduated in the past 4 years joined grad programs in physics/STEM: Berkeley, U. Chicago (2), Harvard, Michigan State, U. Minnesota, MIT, Stanford, Tufts, Virginia Tech, U. Wisconsin & Yale.

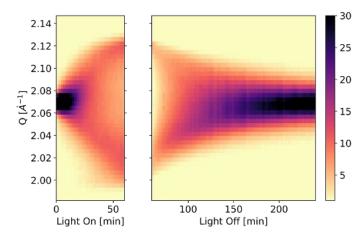
... also one Fulbright fellowship (astroparticle physics, University of Tokyo)


Wellesley physics, astronomy and engineering faculty

Wellesley Solar Lab PI: Rebecca Belisle

Assistant Professor rbelisle@wellesley.edu

Developing wide bandgap perovskites for tandem solar cells.

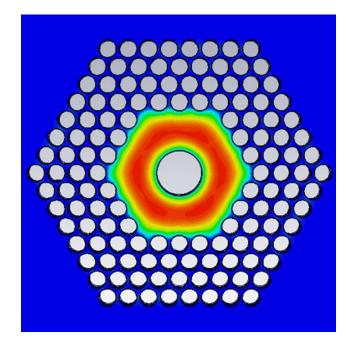

Uses *in situ* Grazing-Incidence Wide-Angle X-ray Scattering to characterize crystallization and degradation of perovskites.

Currently working at SSRL, and would be interested in expanding work to NSLS II (11-BM).

Wellesley students working at SSRL

GIWAXS data collected on mixed halide perovskites under illumination at SSRL beamline 11-3

Samantha Lewis Assistant Professor


sl128@wellesley.edu

Axion haloscope cavities Novel resonator designs for axion haloscopes

Advanced accelerator cavities
Developing cavities to enable high
gradient particle accelerators

Quantum sensing

Impact of ionizing radiation on superconducting qubit errors; interested in applying qubits to axion dark matter searches

Simulated electric field of tunable photonic band gap resonator prototype for HAYSTAC axion search.

Samantha Lewis Assistant Professor s1128@wellesley.edu

Background:

- BS/PhD in Nuclear Science and Engineering (MIT, Berkeley, FNAL)
- Experience with many accelerator systems, electron sources Instructor at USPAS (US Particle Accelerator School) January 2023, previous attendee

Would like to learn more about:

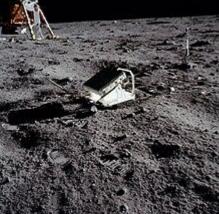
- BNL accelerator R&D, potential collaboration opportunities for cavity and/or electron source development
- Any low temperature or high magnetic field test facilities
- Resources for developing nuclear physics and particle accelerator coursework

Zach Addison Assistant Professor

za101@wellesley.edu

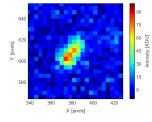
Future work in Quantum Information Theory

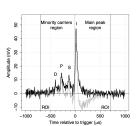
Topologically protected computing algorithms to be explored through the dynamical braiding of anyonic excitations

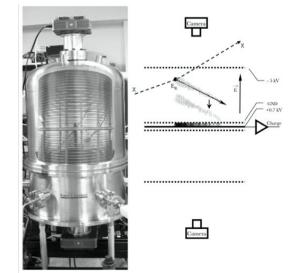

TITLE	CITED BY	YEAR
Spatially dispersive circular photogalvanic effect in a Weyl semimetal EJMRA Zhurun Ji, Gerui Liu, Zachariah Addison, Wenjing Liu, Peng Yu, Heng Nature Materials 18 (9), 955-962	116	2019
Quadrupole topological photonic crystals L He, Z Addison, EJ Mele, B Zhen Nature communications 11 (1), 3119	93	2020
Floquet Chern Insulator of Light BZ L He, Z Addison, J Jin, EJ Mele, SG Johnson Nature Communications 10, 4194	59 *	2019
Plasmon reflections by topological electronic boundaries in bilayer graphene BY Jiang, GX Ni, Z Addison, JK Shi, X Liu, SYF Zhao, P Kim, EJ Mele, Nano letters 17 (11), 7080-7085	58	2017
Intrinsic Fermi-surface contribution to the bulk photovoltaic effect L Gao, Z Addison, EJ Mele, AM Rappe Physical Review Research 3 (4), L042032	28 *	2021
Optically Controlled Orbitronics on a Triangular Lattice EJM Vő Tiến Phong, Zachariah Addison, Seongjin Ahn, Hongki Min, Ritesh Agarwal Physical Review Letters 123 (23), 236403	26	2019
Twist, slip, and circular dichroism in bilayer graphene Z Addison, J Park, EJ Mele Physical Review B 100 (12), 125418	19	2019

James Battat
Associate Professor
james.battat@wellesley.edu

Lunar Laser Ranging (APOLLO)





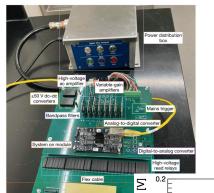

Dark matter detection (directional)
Gas-based Time Projection Chambers

DMTPC electron drift (CF₄), CCD imaging

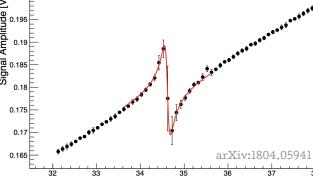
DRIFT negative-ion drift (SF₆), wire readout

arXiv:2206.00125

Digital Wire Analyzer of Mechanical Tension, Electrical Continuity, and Isolation

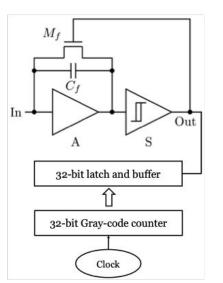

Sebastien Prince[®], Pratyush Anand[®] James Battat[¶], Russell Farnsworth[®], Nathan Felt[®], Roxanne Guenette[®], Shion Kubota[®], Austin Li[®], Em Murdock[®], John Oliver[®], Chris Stanford[®], and Jackson Weaver[®]

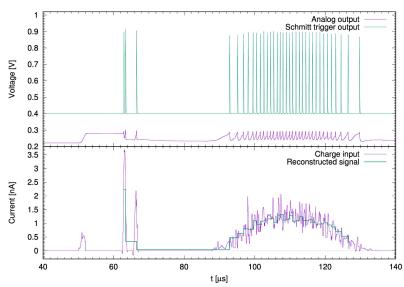
Neutrino detection



Wellesley joined DUNE in 2019 First LAC member (to my knowledge)

Far detector Anode Plane Assembly wire tension measurements

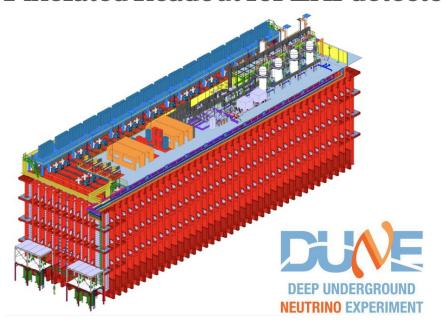

tension \propto frequency²



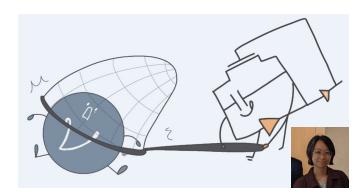
AC Frequency [Hz]

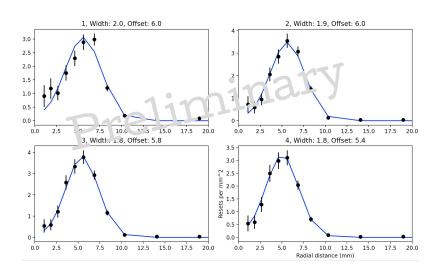
Pixelated Readout for LAr detectors



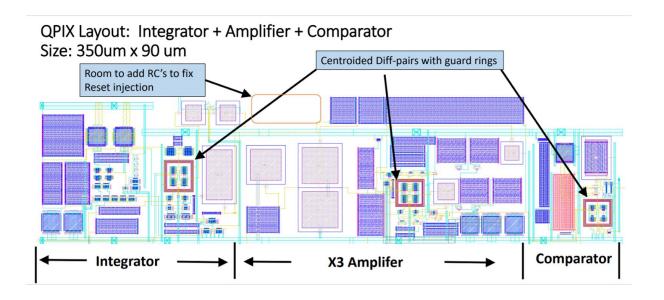


Pixelated Readout for LAr detectors





Measurement of e⁻ diffusion in gas using Q-Pix prototype at Wellesley



Q-Pix ASIC now exists - time to test

Quantum Information

Robbie Berg

Katie Hall

Expand research and hands-on curricular opportunities related to quantum information and devices.

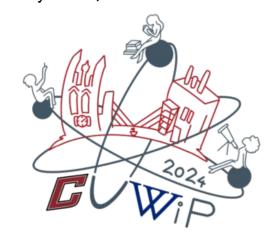
Currently our students are:

building entangled photon sources, measuring single photon interference, measuring optically detected magnetic resonance with nitrogen vacancies in diamond

Dr. Tina Brower-Thomas Dr. Kimberly Jones Howard University

Investigating applications for non-classical states of light (with Dr. Jon Habif at USC's ISI in Waltham, MA)

Actively pursuing projects and partnerships to increase opportunities for our students in these fields and to help grow the quantum workforce.


We look forward to continued conversations and future collaborations!

WELLESLEY

Advertisement:

Wellesley and Boston College Conference for Undergraduate Women in Physics (CUWiP) January 19-21, 2024

