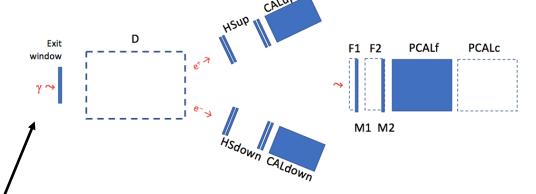
Synchrotron Radiation in Direct Photon Detector

Y. Ali¹, A. Kowalewska¹, J. Nam², K. Piotrzkowski¹, B. Surrow²

- 1. AGH University of Science and Technology, Krakow
- 2. Temple University, Philadelphia

Recap

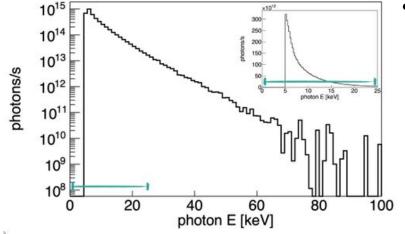
SPEC

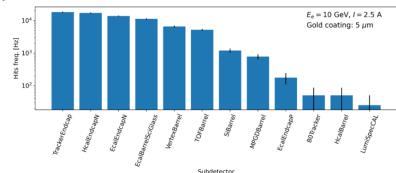

Q1eR B2AeR Q2eR Exit window Taggers

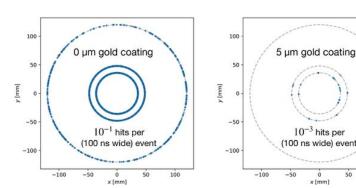
Far backward Geometry

Geom generated in the standard EIC framework and imported to SynRad+

Direct


Photon




- Objectives
 - We aim to study distributions of energy deposited by bremsstrahlung, for various detector types and configurations (Anna, Yasir)
 - Study the SR dosage on the photon calorimeters & other sensitive components in the far backward region.
 - Provide constraints for the SR shielding for the photon detector in terms of the shielding properties and performance and detection efficiency.
 - Quantify the damage due to SR on these components.

Status

Studies from background TF (Rey Cruz)

- Accurate modeling of the accelerator & beam properties
 - SR simulation already produced from the accelerator group (https://indico.bnl.gov/event/10974/contributions/51260/).

But this sample only simulates photons originating from the magnets in the forward region.

→ Used for studies of central detector components.

(https://wiki.bnl.gov/EPIC/index.php?title=Background)

- → Features Ee = 10 GeV, whereas we expect to see much higher SR activity with Ee = 18 GeV collisions.
- Similar simulation work, but focused on the far-backward components, will be a key contribution to this study.
- BNL is in the process of a new hiring for this simulation tasks.