AEROGEL CHARACTERIZATION

A.R. Altamura INFN – Bari (Italy)

dRICH meeting - 17/05/2023

OUTLINE

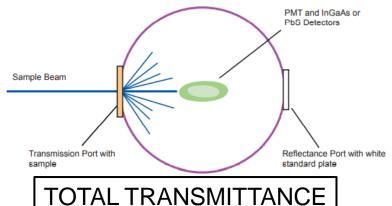
- List of the silica aerogel tiles under test
- Measurements of optical transmittance
- Fit of transmittance data
- Transmission length evaluation
- Summary

TILES CHARACTERISTICS

Tile	n	t [cm]	Tile	n	t [cm]	
1		2	18		2	
2	1,03	2	19	1,005	2	
3		2	20		2	
4		2	21	1.02	2	
5		2	22	1,03	2	
6		1	23		2	
7		1	24	1.00	2	
8	1,04	2	25	1.02	2	
9		2	26		2	
10		2	27		2	
11		2	28		2	
12		2	29		2	
13	1,05	2	30	1.02	2	
14		2	31	1.02	2	
15		2	32		2	
16		2	33		2	
17		2	34		2	

Measurements performed on **22 silica aerogel tiles** at CERN in July-August 2022.

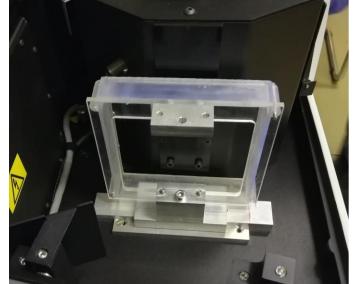
Tiles manufactured at Aerogel Factory Co., Ltd. and delivered in March 2021.

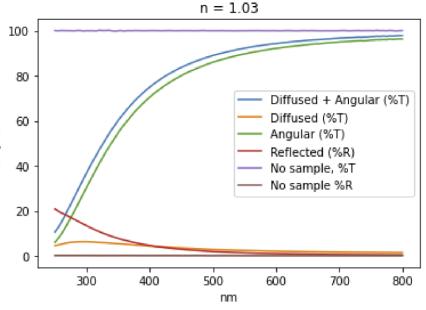

Tiles 6 and 7 manufactured by Matsushita Electric Works (Japan) were bought by INFN-Bari in 2000 as part of the HERMES collaboration.

Transmittance measurements on tiles with n = 1.02 are courtesy of the INFN-Ferrara group.

Tiles having **different refractive indices** have been characterized in terms of transmittance and tile thickness and shape.

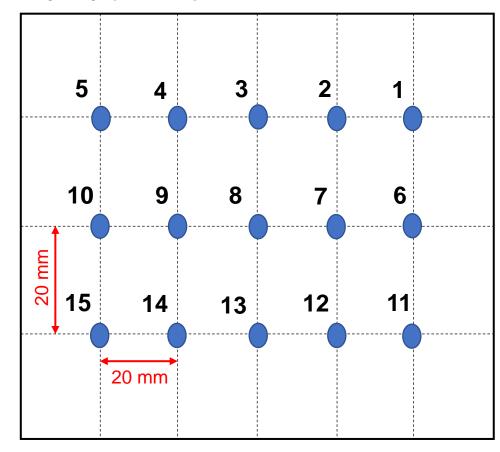
TRANSMITTANCE MEASUREMENT


Perkin Elmer spectrometer: integrating sphere and two different light sources to cover the range 250 - 800 nm


PMT and InGaAs or PbS Detectors Sample Beam Reflectance Port open Transmission Port with

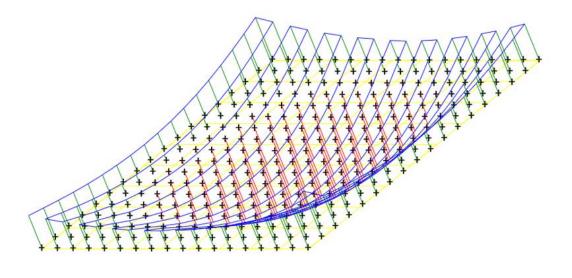
LINEAR TRANSMITTANCE TOTAL T. - DIFFUSE T.

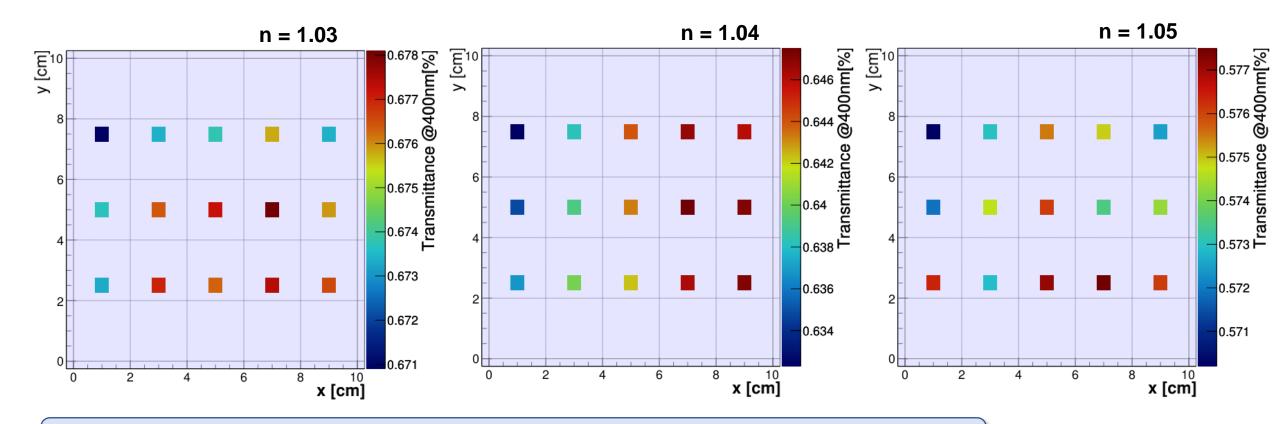
DIFFUSE TRANSMITTANCE



Each tile was placed into a holder (10x10 cm²) and mounted onto a metal ridge sliding perpendicular to the beam to explore different positions of the samples

TILE LAYOUT

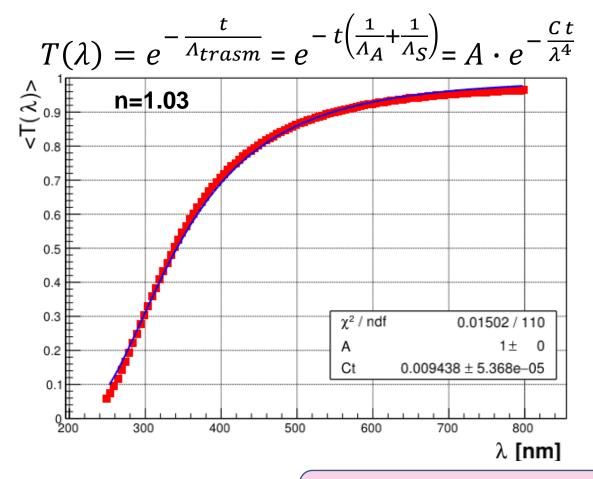

10x10 cm² Tile

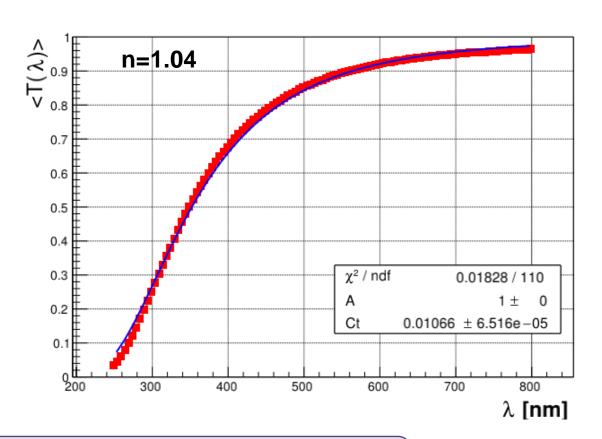

Transmittance measured at 15 different points on the tile

Tile thickness = 2 cm

Thickness not uniform because of the meniscus shape due to fabrication process

TRANSMITTANCE MEASUREMENTS

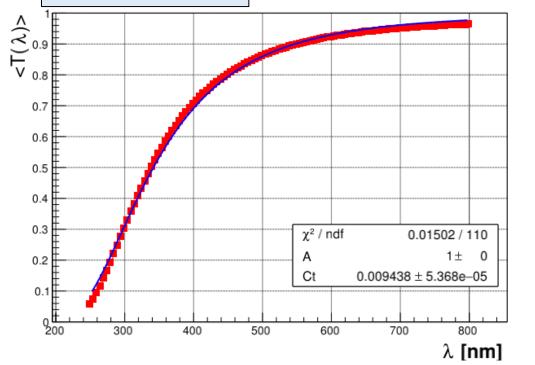



Small transmittance dispersion around 0.6%, which ensures a high uniformity

Maximum Transmittance region not localized in the center where tile is supposed to be thinner, Minimum Transmittance on the borders as expected

FIT TRANSMITTANCE (Tile n=1.03 - 1.04)

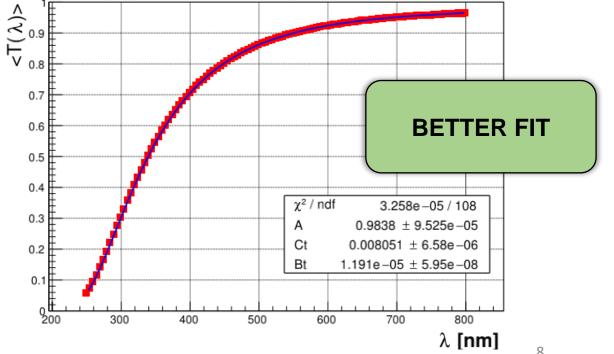
Transmittance fitted by **Hunt formula**:


WHAT HAPPENS BY INCLUDING THE ABSORPTION CONTRIBUTION IN THE HUNT FORMULA?

FIT TRANSMITTANCE (Tile n = 1.03)

Transmittance fitted by **Hunt basic**:

$$T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}} = e^{-t\left(\frac{1}{\Lambda_A} + \frac{1}{\Lambda_S}\right)} = A \cdot e^{-\frac{Ct}{\lambda^4}}$$


Assuming: Λ_A negligible $\Lambda_S \sim \lambda^4$

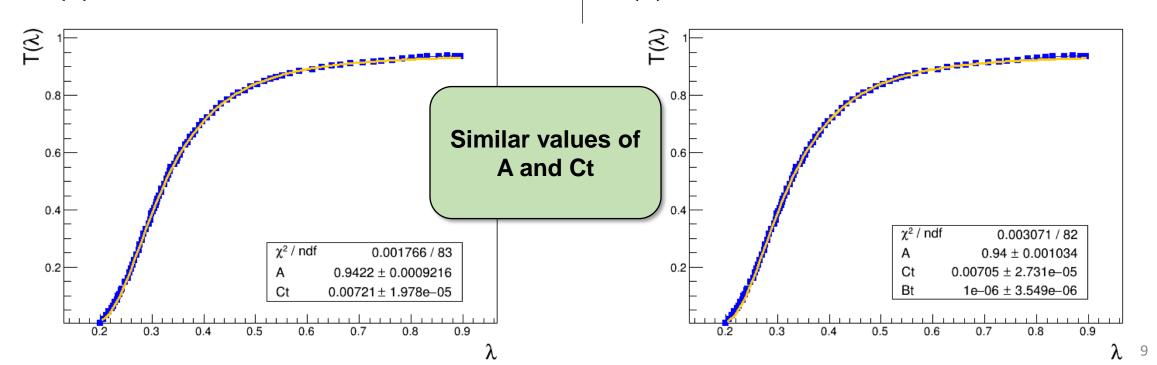
Transmittance fitted by **Hunt extended**:

$$T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}} = e^{-t\left(\frac{1}{\Lambda_A} + \frac{1}{\Lambda_S}\right)} = A \cdot e^{-\frac{Ct}{\Lambda^4}} \qquad T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}} = e^{-t\left(\frac{1}{\Lambda_A} + \frac{1}{\Lambda_S}\right)} = A \cdot e^{-\frac{Bt}{\Lambda^8}} \cdot e^{-\frac{Ct}{\Lambda^4}}$$

Assuming: $\Lambda_A \sim \lambda^8$ $\Lambda_S \sim \lambda^4$

<T> average of the transmittance values at the different points on tile #1 (n = 1.03)

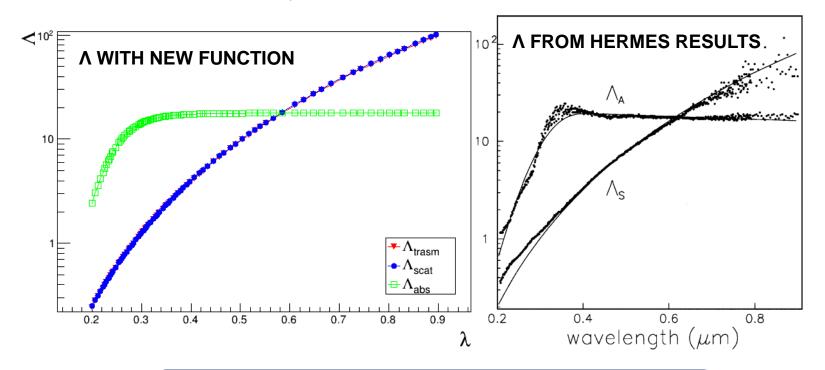
TESTING THE HUNT EXTENDED FORMULA ON A KNOWN DATASET


The Hunt extended formula was validate through a fit of the transmittance values from the dataset in E Aschenauer at al. Optical characterization of n=1.03 silica aerogel used as radiator in the RICH of **HERMES**

Transmittance fitted by **Hunt formula**:

$$T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}} = e^{-t\left(\frac{1}{\Lambda_A} + \frac{1}{\Lambda_S}\right)} = A \cdot e^{-\frac{Ct}{\lambda^4}}$$

Transmittance fitted by **Hunt extended formula**:


$$T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}} = e^{-t\left(\frac{1}{\Lambda_A} + \frac{1}{\Lambda_S}\right)} = A \cdot e^{-\frac{Ct}{\Lambda^4}} \qquad T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}} = e^{-t\left(\frac{1}{\Lambda_A} + \frac{1}{\Lambda_S}\right)} = A \cdot e^{-\frac{Bt}{\Lambda^8}} \cdot e^{-\frac{Ct}{\Lambda^4}}$$

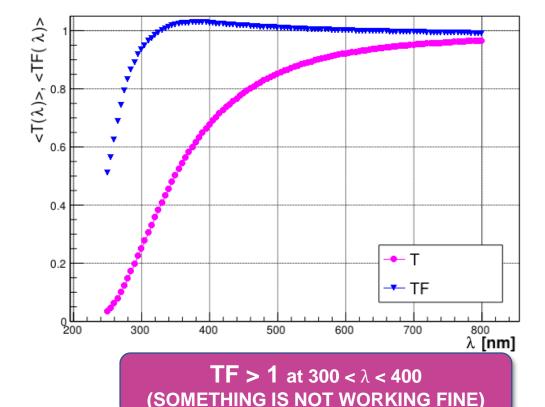
TESTING THE HUNT EXTENDED FORMULA ON A KNOWN DATASET

Transmission, scattering and absorption lengths from the **Hunt extended function**:

$$\Lambda_{trasm} = -\frac{t}{\ln(T)}$$

$$\Lambda_{scat} = \frac{\lambda^4}{C}$$

$$\Lambda_{abs} = \frac{\lambda^8 \cdot t}{B \ t - \lambda^8 \cdot \ln(A)}$$

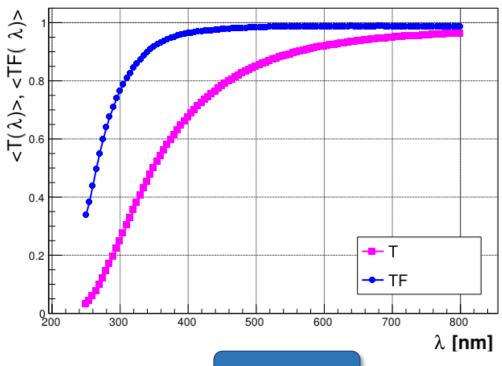

GOOD AGREEMENT BETWEEN THE RESULTS, LET'S TRY THE FUNCTION ON OUR DATA

TRANSMITTANCE AND TRANSFLECTANCE (Tile n = 1.03)

T and TF fitted by **Hunt formula**:

$$T(\lambda) = A \cdot e^{-\frac{Ct}{\lambda^4}}$$

$$TF = T(\lambda) \cdot e^{\frac{C t}{\lambda^4}}$$


T and TF fitted by **Hunt extended**:

$$T(\lambda) = A \cdot e^{-\frac{B t}{\lambda^8}} \cdot e^{-\frac{C t}{\lambda^4}}$$

$$TF = T(\lambda) \cdot e^{\frac{Ct}{\lambda^4}}$$

NOTE

Ct values are different because they come from different fit functions

TRANSMISSION LENGTH (Tile n=1.03)

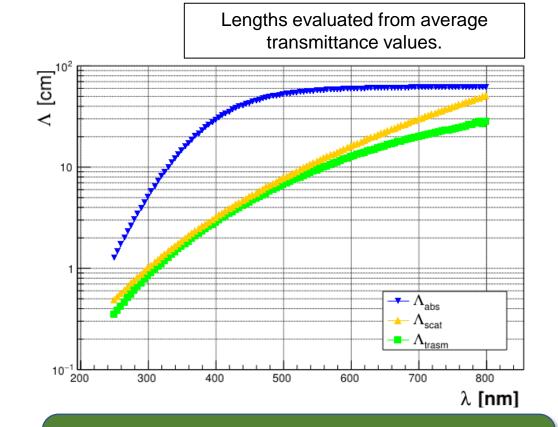
$$T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}} = e^{-t\left(\frac{1}{\Lambda_A} + \frac{1}{\Lambda_S}\right)} = A \cdot e^{-\frac{Bt}{\lambda^8}} \cdot e^{-\frac{Ct}{\lambda^4}}$$

TRANSMISSION LENGTH:

$$T(\lambda) = e^{-\frac{t}{\Lambda_{trasm}}}$$

$$\Lambda_{trasm} = -\frac{\iota}{\ln(T)}$$

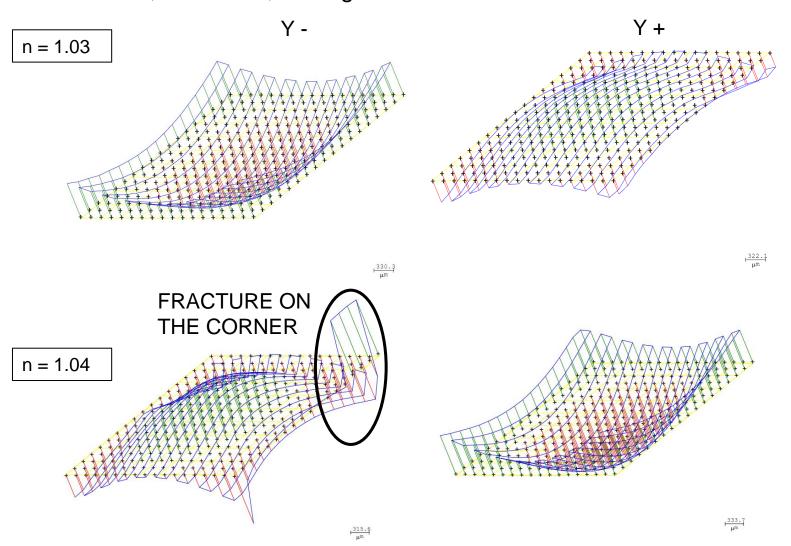
SCATTERING LENGTH:


$$e^{-\left(\frac{t}{\Lambda_S}\right)} = e^{-\frac{Ct}{\lambda^4}}$$

$$\Lambda_{scat} = \frac{\lambda^4}{C}$$

ABSORPTION LENGTH:

$$e^{-\left(\frac{t}{\Lambda_A}\right)} = A \cdot e^{-\frac{Bt}{\lambda^8}}$$


$$\Lambda_{abs} = \frac{\lambda^{3} \cdot t}{B \ t - \lambda^{8} \cdot \ln(A)}$$

SMALL IMPACT OF THE ABSORPTION ON THE TRANSMISSION LENGTH

TOUCH PROBE

Minimum, maximum, average and std deviation of the measured thickness:

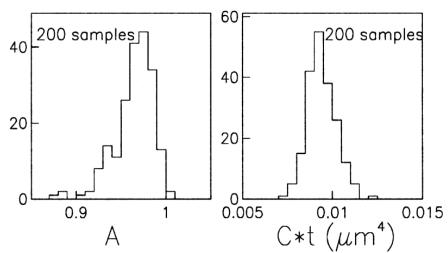
n=1.03

min tickness (mm): 19.690 max tickness (mm): 20.385 standard deviation: 0.172 average (mm): 19.955

n=1.04

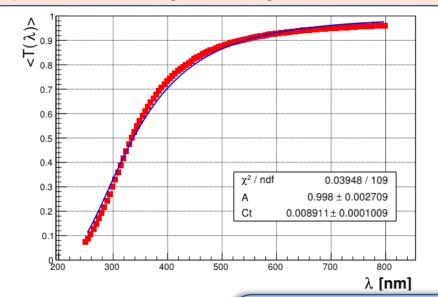
min tickness (mm): 19.271 max tickness (mm): 21.798 standard deviation: 0.335 average (mm): 19.641

n=1.05


min tickness (mm): 19.965 max tickness (mm): 20.479 standard deviation: 0.098 average (mm): 20.106

MENISCUS SHAPE DUE TO FABRICATION PROCESS

Tile 6-7: DEGRADATION IN TIME


Tiles 6 and 7 (t = 1 cm) were originally bought for the HERMES collaboration back in 2000.

They have been stored in air without particular care. It is reasonable to think that they have undergone degradation.

A and Ct estimated as the average over 200 samples (tiles 6-7 were part of these samples)

Tile	2000		2022			
	Α	Ct	Α	Ct		
6	0.964	0.0094	0.998 ± 0.003	0.0089 ±0.0001		
7			1± 0	0.00682 ± .00084		

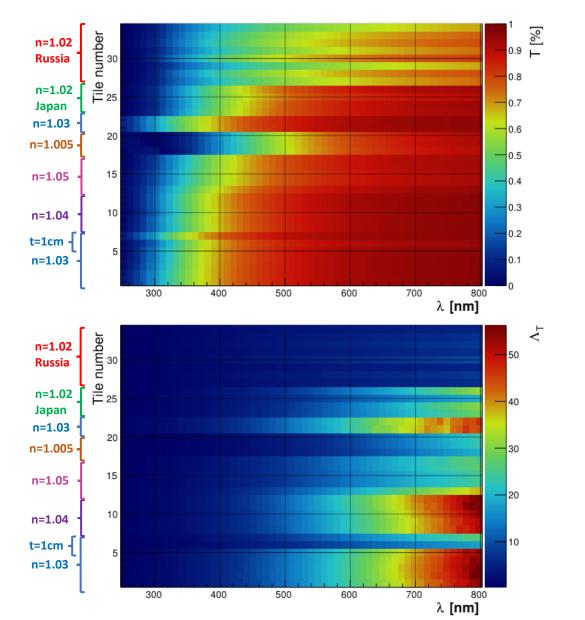
Slight increase of absorption-related A and decrease of scattering-related Ct

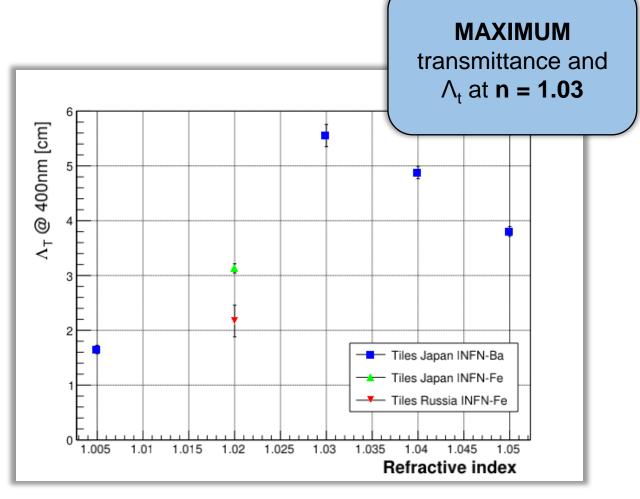
Total transmittance used in calculations.

Low accuracy!
FURTHER ANALYSIS
REQUIRED

OPTICAL PROPERTIES - SUMMARY

Results @ 400 nm


Tile	n	T _{meas} [%]	Λ_t [cm]	$\Lambda_{\rm t}$ datasheet	t _{avg} [cm]	Tile	n	T _{meas} [%]	Λ _t [cm]	$\Lambda_{\rm t}$ datasheet	t _{avg} [cm]
1		0,71	5,64	6,27	1,97	18	1,005	0,29	1,61		2,00
2	0,71 0,70 1,03 0,70 0.70	0,71	5,68	6,32	1,98	19		0,29	1,65		2,06
3		0,70	5,64	6,13	1,99	20		0,29	1,69		2,06
4		0,70	5,54	6,06	1,98	21	1,03	0,69	5,40		2,02
5		0.70	5.47	6.00	1.97	22		0,69	5,59		2,03
6		0,69	2,65		0,98	23	- 1.02	0,54	3,24		2,00
7		0,75	3,47		0,97	24		0,53	3,10		2,00
8		0,66	4,73	5,47	1,94	25		0,52	3,04		2,00
9		0,67	4,92	5,61	1,95	26		0,53	3,13		2,00
10	1,04	0,66	4,78	5,58	1,96	27		0,38	2,09		2,00
11		0,67	4,96	5,71	1,97	28		0,42	2,32		2,00
12		0,68	5,00	5,86	1,96	29		0,34	1,85		2,00
13	1,05 0,5 0,5	0,63	4,41	3,59	2,02	30	1.02	0,45	2,56		2,00
14		0,58	3,73	3,54	2,01	31		0,38	2,09		2,00
15		0,58	3,73	3,45	2,02	32		0,42	2,31		2,00
16		0,57	3,59	3,79	2,00	33		0,40	2,19		2,00
17		0,57	3,60	3,86	1,98	34		0,36	1,94		2,00


Estimated Λ_t @400nm lower than datasheet values

FURTHER INVESTIGATION REQUIRED

MIGHT BE OVERESTIMATED BECAUSE ONLY TOTAL TRANSMITTANCE AVAILABLE

OPTICAL PROPERTIES - SUMMARY

CONCLUSION

- 22 silica aerogel tiles characterized in terms of transmittance
 - Small transmittance dispersion among the sampling points on the tiles
- Data fitted by a 3-parameters Hunt extended formula
- Transmission, absorption and scattering lengths extracted from transmittance measurements
 - Absorbance negligible with respect to the transmission length
- Maximum and minimum thickness value per tile estimated from transmittance data
 - Not uniform thickness on the tile due to meniscus shape
- Maximum transmittance and transmission length observed for tiles with n = 1.03

WHAT'S NEXT?

- Further investigation on transmission length discrepancy between estimated and datasheet values
- Performing more in-depth measurements of the Tile 6 and 7 to investigate their degradation in time
- Improvement of accuracy including measured thickness in the transmittance measurements on tiles with n = 1.02