

Readout & DAQ update toward review

Pietro Antonioli, Davide Falchieri

INFN Bologna

Context of this update to dRICH meeting:

- Preparing for dRICH review (5th July), eRD submissions (7th July) and INFN budgeting (2024 + multi year) various refinements in progress
- Several meetings among groups working on electronics held since last dRICH discussion on DAQ + <u>interim presentation at DAQ WG</u> (June 1st), since <u>3rd May</u> <u>presentation</u> at dRICH meeting

Outline of this communication:

- What to present at dRICH review about DAQ
- Share information update on costs, components, radiation levels

Yellow boxes are not for dRICH review slides but to prepare discussion for dRICH review

Where we were (few weeks ago)

The need of a two-tier hierarchy of FPGAs descends from PIN I/O requirements

- slave RDO (1 for 1 FPU) (4 piggy backs
- a master RDO (aggregating 4 slave RDO)

dRICH PDU: Photosensor Detector Unit

- 4 8x8 matrix (3x3 mm2 SiPM) → 256 sensors
- each FEB (4) hosts 1 ALCOR64
- 1 RDO reads 4 ALCOR64

- RDO in the middle of FEB maximizes (smal) area available: RDO is 4 x 9 cm: still challenging but no show stoppers for the moment
- The dRICH electronic burger :

Realize a RDO demonstrator in 2024 is key milestone toward TDR

dRICH readout organization

Key features:

- strong modularity ("1 PDU has all")
- hierarchy of DAM used as data concentrator (input got from DAQ WG)
- Big data reduction happens at DAM-L1 using **interaction tagger** (input from EIC project). Throughput is modelled assuming an interaction tagger signal can reach dRICH DAM with max 2 us latency
- Data available @ DAM-L2 are per sector at FPGA level \rightarrow potential for further algorithms for data reduction
- DAM-L1 might be eventually stored inside hall (in rack enclosure)

These numbers are not the "standard" ones declared so far in some GoogleSheets. What about the review?

dRICH RDO conceptual design

ePI

Not on scale, not a placement! RDO prototype foreseen in 2024

dRICH readout modeling

For dRICH review we can expose a subset of all this... Basic number is input sensor rate... the rest follows...

A	В	С	D	E	F	G		
	dRICH DAQ parameters			ALCOR parameters		Notes		
	RDO boards	1252		Front end limit [kHz]	4000			
	ALCOR64 x RDO	4		ALCOR Clock [MHz]	320 🔻	It will be 394.08 MHz or 295.55 MHz		
	dRICH channels (total)	320512		Channels/serializer	8		Messag	e to give:
	Number of DAM L1	30		Bits per hit	64	2 32-bit words per hit (also TOT)	1165548	
	Input link in DAM L1	42		Bits per hit encoding 8/10	80			
	Output links in DAM L1	6		Serializer band limit [Mb/s]	640			
	Number of DAM L2	6		Theoretical Serializer limit/ channel [kHz]	1000	this would be with 0 control words	Through	put under contro
	Input link to DAM L2	30		Serializer limit single ch [kHz]	250	this is expected to improve with ALCOR v3	iniougi	iput under contro
	Link bandwidth [Gb/s] (assumes PolarFIre)	12,7		Number of serializer per chip	8			
	Interaction tagger reduction factor	200		Channel/chip	64			
	Interaction tagger latency [s]	2,00E-06		Shutter width (ns)	2			
	EIC parameters						From 2.	2 Tbps (at DAM-L2
	EIC Clock [MHz]	98,522						
	Orbit efficiency (takes into account gap)	0,92					at 67 Gł	$nns(at D\Delta M-I1)$
							@500 k	Hzsonsor
_	Bandwidth analysis		Limit	Comments			C JOU K	
	Sensor rate per channel [kHz]	500,00	4.000,00					
	Rate post-shutter [kHz]	92,00	250,00					
	Throughput to serializer [Mb/s]	57,50	640,00					
	Throughput from ALCOR64 [Mb/s]	460,00		limit FPGA dependent, da verificare				
	Throughput from RDO [Gb/s]	1,80	12,70					
	Input at each DAM I [Gbps]	75,47	533,40					
	Buffering capacity at DAM I [MB]	0,02		to be checked				
	Throughput from DAM I to DAM II [Gbps]	0,38	12,70	this might be higher (from FELIX to FELIX)		Do wo pood a	clide for thic?	
	Output to each DAM II (1 DAM II/sector) [Gbps]	11,32	381,00			Do we need a	since for this?	
_								
_								
_								
	Aggregated dRICH data		Comments					
	Iotal input at DAM I [Gb/s]	2.264,06	This is only "insid	de" DAM, not to be transferred on PCI				
	Iotal Input at DAM II [Gb/s]	67,92						
		C 7 00	110/c might coours	a horo a turtor reduction 2 from more stringent til	me cute			

- We get rid of any hardware development for intermediate DAM ("more firmware, less hardware" approach)
- Space is a big challenge \rightarrow this approach saves space inside readout box
- Cost → to be done full assessment, but scenario with 312 links is not for free (and it entails, however 6-7 DAMs, 312 medium-size FPGA medium size, etc.) → back of the envelope computation is approx. +600 k\$ (just fresh money but if you keep in mind salaries balance is different!)(*)
- PDU very modular
- Less power consumption inside readout box
- We add cables, materials inside readout box

FPGA	cost estimate (small qty) EU
XCAU10P- 2FFVB676E	100-250
XCAU15P- 2FFVB676E	300-350
MPF200T- FCVG484E	300-350
MPF200T- FCSG536I	400-485

During 2024 we need to build a prototype RDO card ("close to final") where we demonstrate:

- We can fit within space •
- We start talking with ePIC DAQ ("FELIX based")
- We are able to serve 2023 electronics (old ALCOR32/old FEB with FireFly connectors) ٠
- We operate test beam 2024 (October) with optical link readout and RDO ٠

The exercise must aim:

- To fully define specs of RDO (possibly by December 2023) •
- To select FPGA candidate (and it might include some radiation test) •
- To define ancillary services on RDO, we will work out within dRICH electronics the divison of work (LV, watchdog, ٠ This slide NOT for dRICH review communication, ... \rightarrow conversations on-going)
- Several studies / collection of material in progress ٠

None of the following for dRICH review

• IpGBT and Versatile link +

- https://ep-ese.web.cern.ch/project/lpgbt-and-versatile-link
- IpGBT
- VTRX+
- produced for LS3/Run4
- no iteration after that for mass production is planned (for now)
 - performance assumed to be good for LS4/Run5
 - if this is not correct → we need to speak up now
 - future development effort goes to EP-RD WP6

Slide from A. Kluge, ALICE Electronics coordinator

Note IpGBT not an option for EIC, but VTRX+ is a miniaturized opt. transceiver (rad hard) that might be interesting

Log

VTRx+ Front-end Module

• Versatile

- Up to 4 Tx + 1 Rx. configurable by masking channels
- Miniaturised
 - 20 x 10 x 2.5 mm
- Pluggable
 - Electrical connector
- Data-rate
 - Tx: up to 4×10 Gb/s, Rx: 2.5 Gb/s
- Environment
 - Temperature: -35 to + 60 °C
 - Total Dose: 100 Mrad
 - Total Fluence: 1x10¹⁵ n/cm² and 1x10¹⁵ hadrons/cm²
- Status

14/06/2023 dRICH meeting

- Pre-production ongoing
- Solving problems with module assembly
- Alignment of optical components
- Ramping up to 2k modules/month in 2023
 EP-ESE

A. Kluge

10 Mav. 2023

Slide from A. Kluge, ALICE Electronics coordinator

EIC project has been informed (by us) that a decision is needed quickly (Jeff reported the issue at last TIC)

6

quantity and commitment to buy needs to be settled by end of 2023

Other optical transceivers for RDO?

LENGTH = 10 cm

Samtec FlyOver (used in many PCI cards) might be a possibility

- To be checked under radiation
- Dimensions should be similar to current Samtec FireFly (copper):
 - 2.5 x 1 cm not so different w.r.t. to VTRX+ but big heat-sink
- Cable to minipod connectors for patch panels... etc.
- > All to be studied!

FIREFLYTM MICRO FLYOVER SYSTEMTM FIREFLYTM MICRO FLYOVER SYSTEMTM

Future-proof system with interchangeability of FireFly™ copper and optical using the same micro connector system for up to 28 Gbps per lane.

Features

- High-speed performance to 28 Gbps per lane
- x4 and x12 designs
- Variety of integral heat sink and End 2 options
- Interchangeability of copper and optical
- Micro rugged two-piece connector
- Extended temperature and PCIe®-Over-Fiber solutions

Products

Select

14/06/2023 dRICH meeting

See other presentation (if time allowed) Short summary:

- more precise data coming from background WG. Magic conservative numbers for dRICH:

TID = 0.2 krad (10 years at max. lumi) Φ (n 1-MeV n_{eq}) = 7 10¹⁰ (10 years at max lumi) / cm² ϕ (h>20 MeV) = 20 /cm² s⁻¹ (at max lumi)

- trade-off between a Flash technology and RAM to be studied

- several key irradiation tests will be needed in 2024 (plus the study of literature, when available)

Test/Development of ePIC DAQ link on a pair of Zynq ZCU102 (1 available, 1 from project)

ePIC World

•

Davide/Pietro part of a small sub-DAQ WG to define specs of DAQ link These cards will be used to define specs. We might play already with RDO when existing (clock transmission etc). Since Fall 2023

No FELIX available from ATLAS/BO: we will use VC709 as main "FELIX" development ٠ platform

 \rightarrow ATLAS provides FW for VC709 operating it as a "mini-FELIX"

 \rightarrow we need to collect more information about FELIX, the project expects to "release" FELIX in 2025, following shutdown of sPHENIX

Building a plan

dRICH World

- define FEB-RDO specs!!! \rightarrow by December 2023 at the latest worked out internally dRICH ٠
- Production RDO + breakout-boards: first semester 2024
- @test-beam 2024: read 8 PDU using CONET IPCORE and 2 PCIe CARD A3818 from CAEN (all hardware + know-how available from ALICE
- Some radiation tests of key component @TIFPA to be planned for 2024 \rightarrow eRD109

Backup

First FPGA candidate: Xilinx Artix Ultrascale+ family

	AU7P	AU10P	AU15P	AU20P	AU25P
System Logic Cells	81,900	96,250	170,100	238,437	308,437
CLB Flip-Flops	74,880	88,000	155,520	218,000	282,000
CLB LUTs	37,440	44,000	77,760	109,000	141,000
Max. Distributed RAM (Mb)	1.1	1.0	2.5	3.2	4.7
Block RAM Blocks	108	100	144	200	300
Block RAM (Mb)	3.8	3.5	5.1	7.0	10.5
UltraRAM Blocks	-	-	-	-	-
UltraRAM (Mb)	-	-	-	-	-
CMTs (1 MMCM and 2 PLLs)	2	3	3	3	4
Max. HP I/O ⁽¹⁾	104	156	156	156	208
Max. HD I/O ⁽²⁾	144	72	72	72	96
DSP Slices	216	400	576	900	1,200
System Monitor	1	1	1	1	1
GTH Transceiver ⁽³⁾	4	12	12	-	_

ΤΥ	
72, 156, 0, 12	96, 208, 0, 12
72, 156, 0, 12	72, 208, 0, 12
7.7	Y 2, 156, 0, 12 2, 156, 0, 12

Xilinx Artix Ultrascale+ family

VCCINT =	0.850 V
VCCAUX =	1.800 V
VCCO =	1.140 – 3.400 V for HD I/O banks
VCCO =	0.500 – 1.900 V for HP I/O banks

HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.

GTH and GTY transceiver line rates are package limited: SFVB784, SBVB484, UBVA368, and UBVA292 to 12.5Gb/s

LVDS DC specifications (HP I/O banks)

Symbol	DC Parameter	Conditions	Min	Тур	Мах	Units
V _{CCO} ¹	Supply voltage		1.710	1.800	1.890	V
V _{ODIFF} ²	Differential output voltage: $(Q - \overline{Q}), Q = High$ $(\overline{Q} - Q), \overline{Q} = High$	R_T = 100 Ω across Q and \overline{Q} signals	247	350	454	mV
V _{OCM} ²	Output common-mode voltage	R_T = 100 Ω across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF} ³	Differential input voltage: $(Q - \overline{Q}), Q = High$ $(\overline{Q} - Q), \overline{Q} = High$		100	350	600 ³	mV
VICM_DC 4	Input common-mode voltage (DC coupli	ng)	0.300	1.200	1.425	V

On-scale drawings (scale factor = 1.5)

Choosing a Xilinx Artix Ultrascale+ requires both:

- a QSPI Flash
- a Microchip FPGA performing scrubbing

Second FPGA candidate: Microchip Polarfire family

	MPF050	MPF100	MPF200	MPF300	MPF500
Logic Elements (4LUT + DFF)	48K	109K	192K	300K	481K
Math Blocks (18 × 18 MACC)	150	336	588	924	1480
LSRAM Blocks (20 Kb)	160	352	616)	952	1520
uSRAM Blocks (64 × 12)	450	1008	1764	2772	4440
Total RAM (Mb)	3.6	7.6	13.3	20.6	33
uPROM (Kb)	216	297	297	459	513
User DLLs/PLLs	8	8 each	8 each	8 each	8 each
250 Mbps-12.7 Gbps Transceiver Lanes	4	8	16	16	24
PCIe® Gen 2 Endpoints/Root Ports	2	2	2	2	2
Total User I/O	176	296	364	512	584

Microchip Polarfire packages

		_				
		MPF050	MPF100	MPF200	MPF300	MPF500
	Type/Size/Pitch	Tot	al User I/O (I	HSIO/GPIO) GP	OCDRs/XCVF	R
	FCSG325 (11 × 11, 11 × 14.5 0.5 mm)	164 (84/80) 6/4	170 (84/86) 8/4	170 (84/86) 8/4		
	FCSG536 (16 × 16, 0.5 mm)			300 (120/180) 15/4	300 (120/180) 15/4	
<i>.</i>	FCVG484 (19 × 19, 0.8 mm)	176 (96/92) 7/4	284 (120/164) 14/4	284 (120/164)14/4	284 (120/164) 14/4	
2V,	FCG484 (23 × 23, 1.0 mm)		244 (96/148) 13/8	244 (96/148) 13/8	244 (96/148) 13/8	
	FCG784 (29 × 29, 1.0 mm)			364 (132/232) 20/16	388 (156/232) (1 20/16	388 56/232) 20/16
	FCG1152 (35 × 35, 1.0 mm)				512 (276/236) (3 24/16	584 24/260) 24/24

VCCINT = **1.0 V**

HSIO DC IO supply: 1.2V, 1.35V, 1.5V, 1.8V

GPIO DC IO supply: 1.2V, 1.5V, 1.8V, 2.5V, 3.3V

Differential DC input levels

I/O Standard	Bank Type	V _{ICM_RANGE} Libero Setting	V _{ICM} ^{1,3} Min (V)	V _{ICM} ^{1,3} Typ (V)	V _{ICM} ^{1,3} Max (V)	V _{ID} ² Min (V)	V _{ID} Typ (V)	V _{ID} Max (V)
LVDS33	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LVDS257	GPIO	Mid (default)	0.6	1.25	2.35	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LVDS18G ⁴	GPIO	Mid (default)	0.6	1.25	1.65	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6
LVDS187	HSIO	Mid (default)	0.6	1.25	1.65	0.1	0.35	0.6
		Low	0.05	0.4	0.8	0.1	0.35	0.6

Differential DC output levels

I/O Standard	Bank Type	V _{OCM} ¹ Min (V)	V _{ОСМ} Тур (V)	V _{OCM} Max (V)	V _{OD} ² Min (V)	V _{OD} ² Typ (V)	V _{OD} ² Max (V)
LVDS33	GPIO	1.125	1.2	1.375	0.25	0.35	0.45
LVDS25 ⁴	GPIO	1.125	1.2	1.375	0.25	0.35	0.45
LVDS18G ⁴	GPIO	1.125	1.2	1.375	0.25	0.35	0.45

14/06/2023 dRICH meeting

On-scale drawings (scale factor = 1.5)

it would also allow to save on the QSPI Flash (not needed)

VTRX+: 20 x 10 x 2.5 mm³