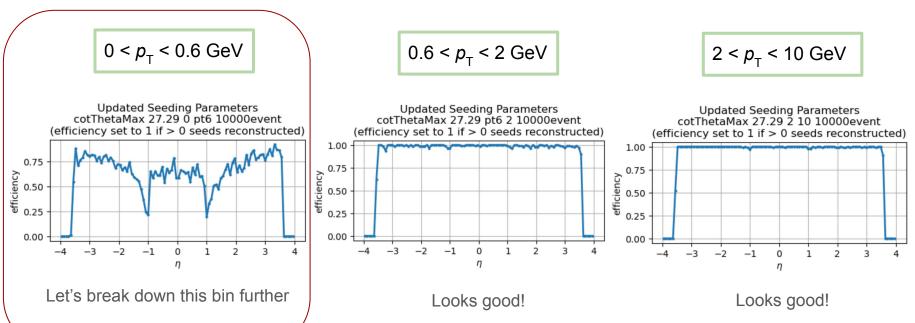

Parameter Exploration for Realistic Seeding - Update

By Emma Yeats

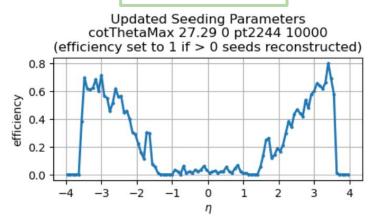

To increase statistics, I ran 10000 events for single pions generated uniformly within three different pT ranges (see below).

Plots shown are set to optimal parameters highlighted in previous updates.

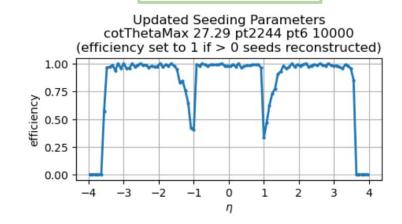
 $0 < p_{\tau} < 0.6 \text{ GeV}$ $0.6 < p_{_{
m T}} < 2 \; {\rm GeV}$ $2 < p_{\tau} < 10 \text{ GeV}$ **Updated Seeding Parameters Updated Seeding Parameters Updated Seeding Parameters** cotThetaMax 27.29 0 pt6 10000event cotThetaMax 27.29 pt6 2 10000event cotThetaMax 27.29 2 10 10000event (efficiency set to 1 if > 0 seeds reconstructed) (efficiency set to 1 if > 0 seeds reconstructed) (efficiency set to 1 if > 0 seeds reconstructed) 1.00 -1.00 0.75 0.75 0.75 efficiency efficiency 0.50 0.50 0.25 0.25 0.00 0.00 -0.00 -3Let's break down this bin further Looks good! Looks good!

To increase statistics, I ran 10000 events for single pions generated uniformly within three different pT ranges (see below).

Plots shown are set to optimal parameters highlighted in previous updates.

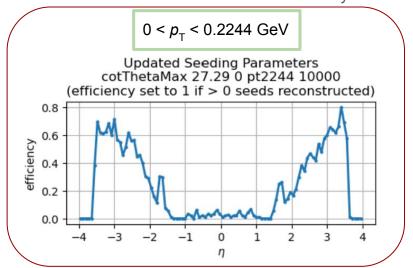


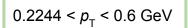
Based on a suggestion from Minjung Kim, we can make an educated guess on which momentum ranges to look at by using the range in r where we look for seeds. To see where the efficiency drops in the central η region, let's use our rMax variable (0.44 m) and our relationship between p_{τ} , B and R:

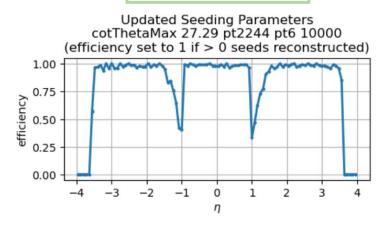

$$p[GeV/c] = 0.3*R[m]*B[T]$$

From this we get p_T = 0.2244 GeV as a bin edge, which should correspond to tracks with low enough momentum that they don't make it to the outermost silicon layer:

$$0 < p_{T} < 0.2244 \text{ GeV}$$

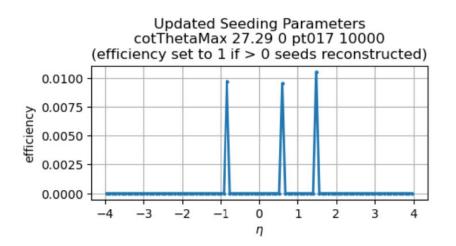

$$0.2244 < p_{_{
m T}} < 0.6 \; {\rm GeV}$$

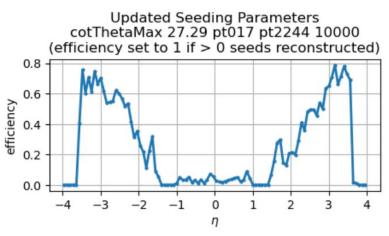


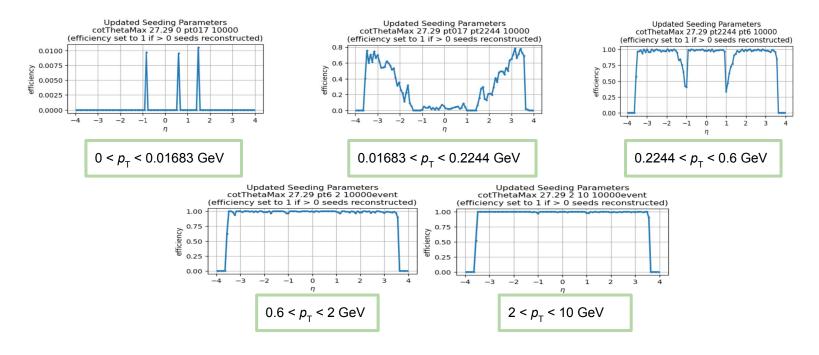

Based on a suggestion from Minjung Kim, we can make an educated guess on which momentum ranges to look at by using the range in r where we look for seeds. To see where the efficiency drops in the central η region, let's use our rMax variable (0.44 m) and our relationship between p_{τ} , B and R:

$$p[GeV/c] = 0.3*R[m]*B[T]$$

From this we get p_T = 0.2244 GeV as a bin edge, which should correspond to not seeing tracks with low enough momentum that they don't make it to the outermost silicon layer:




By the same logic, we shouldn't see much at all within our minimum r value, rMin = 0.033 m (the innermost layer).


Using the same method we get a corresponding $p_{\tau} = 0.01683$ GeV.

 $0 < p_{T} < 0.01683 \text{ GeV}$

 $0.01683 < p_{\rm T} < 0.2244 \; {\rm GeV}$

Overall, we see really good performance in the last two bins, and can also see the effect of the detector configuration on the efficiency:)

Reference - Parameters for Realistic Seeding Efficiency Studies

Parameter	Description	ElCrecon default	Y.S. Lai's default	My New Default
bFieldInZ	z component of magnetic field	1.7 T	1.7 T	1.7 T
rMax	Maximum r value to look for seeds	500 mm	440 mm	440 mm
rMin	Minimum r value to look for seeds	33 mm	33 mm	33 mm
zMin	Minimum z value to look for seeds	-800 mm	-1500 mm	-1500 mm
zMax	Maximum z value to look for seeds	800 mm	1700 mm	1700 mm
beamPosX	Beam offset in x	0	0	0
beamPosY	Beam offset in y	0	0	0
deltaRMinTopSP	Min distance in r between middle and top SP in one seed	1 mm	50 mm	10 mm
deltaRMinBottomSP	Min distance in r between middle and bottom SP in one seed	1 mm	50 mm	10 mm
deltaRMaxTopSP	Max distance in r between middle and top SP in one seed	400 mm	220 mm	200 mm
deltaRMaxBottomSP	Max distance in r between middle and top SP in one seed	400 mm	220 mm	200 mm
collisionRegionMin	Min z for primary vertex	-300 mm	-250 mm	-250 mm
collisionRegionMax	Max z for primary vertex	300 mm	250 mm	250 mm
cotThetaMax	Cotangent of max theta angle	16	16.54	27.29
minPt	Min transverse momentum	100	100 MeV/cotThetaMax	100 MeV/cotThetaMax
maxSeedsPerSpM	Max number of seeds a single middle space point can belong to - 1	1	0	0
sigmaScattering	How many standard devs of scattering angles to consider	5	5	5
radLengthPerSeed	Average radiation lengths of material on the length of a seed	0.1	0.1	0.1
impactMax	Max transverse PCA allowed	20 mm	3 mm	3 mm
rMinMiddle	Min R for middle space point	20 mm	_	-
rMaxMiddle	Max R for middle space point	400 mm	_	-
bFieldMin	min B field	_	0.1 T	0.1