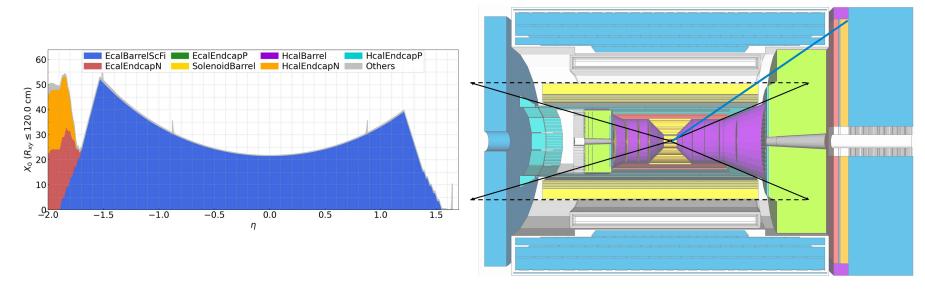
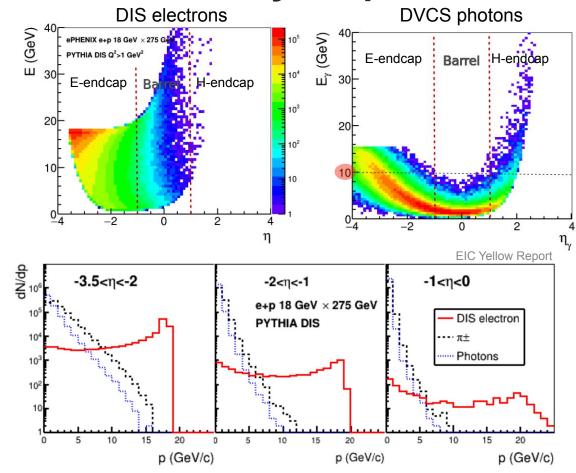

BECal Meeting

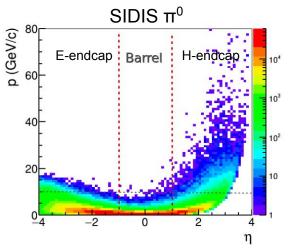
Barrel Electromagnetic Calorimeter Geometry Optimization



05/02/2023

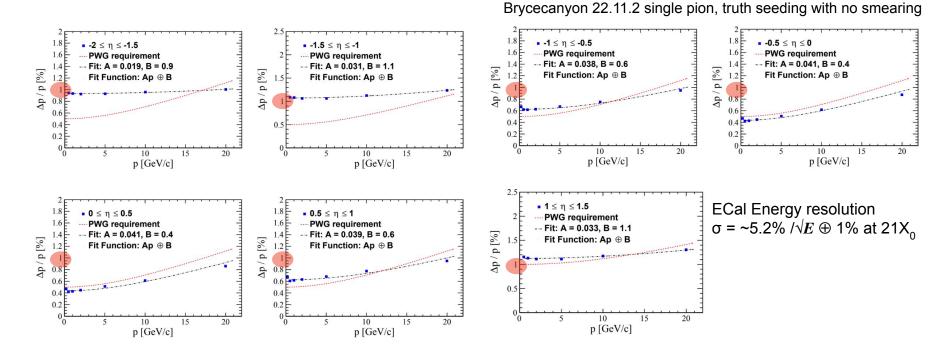


Question: Can we make the calorimeter less deep?


- Barrel ECal is currently ~21 X₁ deep
 - Driven mostly by the high-energy electron response (up to ~ 40 GeV)
 - Plus: Deeper calo → more interaction length (inner HCal)
- Can we make it less deep?
 - We could gain in lower weight and price. How much?

EIC Calorimetry Requirements

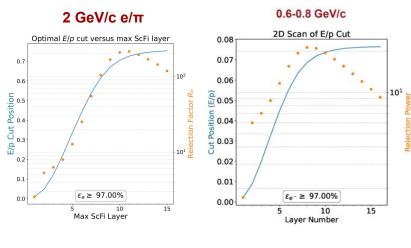
EIC Yellow Report



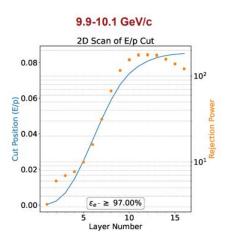
e/π separation:

- Depends on momentum and η
- Tightest constrain from parity violating asymmetries 10⁻⁴
- ΔG requires ~ 10⁻³

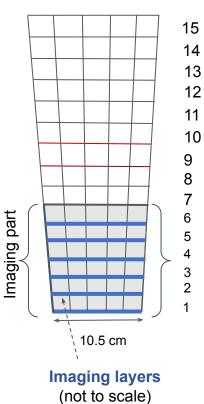
Electron momentum determination


- Will electron momentum will be measured by tracking with superior resolution?
 - Barrel ECal covers region $\eta = (-1.7, 1.2)$

Electron/pion separation

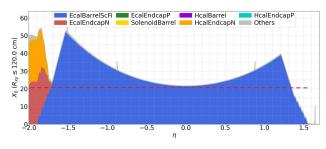

Leans on the AstroPix layers response and E/p cut at different depth of the calorimeter from SciFi/Pb

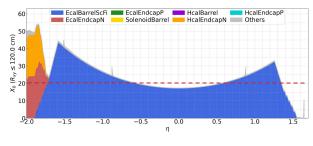
- Side SiPM readout of SciFi/Pb on at different depths (SciFi/Pb layers)
- One layer = 17 rows of fiber (~2 cm) lightguide surface attached to the calo (2x2 cm²)


Optimal cut at 15.73 X_0 (layer 11)

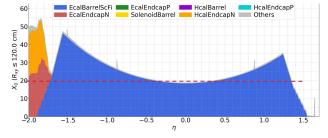
Optimal cut at 15.77 X₀ (layer 8)

Optimal cut at 16.15 X₀ (layer 12)

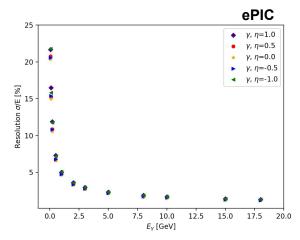

EPIC1/48th of the barrel side view

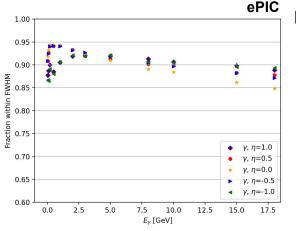

Plots at $\eta = 0$

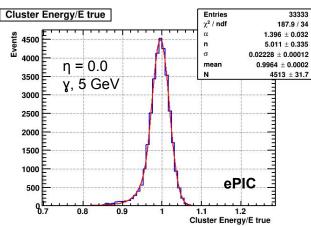
Let's try to drop 2 SciFi/Pb layers


• Currently 15 layers x 17 fibers = 15 x 2.074 cm (SciFi/Pb only) = 15 x 1.43 $X_0 = ~21.45 X_0$

• With 15 layers: ~21.45 X0



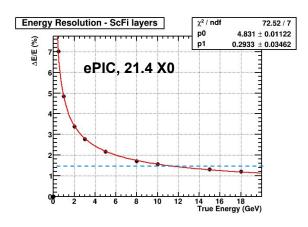

With 12 layers: ~17.1 X0



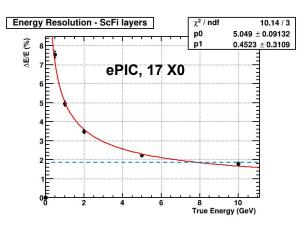
With 13 layers: ~18.5 X0

Energy Resolution - Photons - 21 X₀

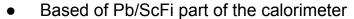
Fit parameters


η	a/√(E) [%]	b [%]
-1	5.1(0.01)	0.47(0.03)
-0.5	4.77(0.01)	0.38(0.02)
0	4.67(0.01)	0.40(0.02)
0.5	4.75(0.01)	0.39(0.02)
1	5.1(0.01)	0.41(0.02)

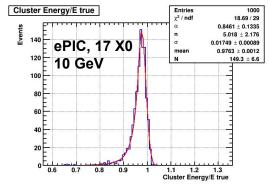
- Based of Pb/ScFi part of the calorimeter
- Resolution extracted from a Crystal Ball fit σ

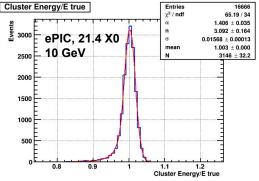

GlueX Pb/ScFi ECal: $\sigma = 5.2\% / \sqrt{E} \oplus 3.6\% \text{ NIM}, A 896 (2018) 24-42$

- 15.5 X_0 , extracted for integrated range over the angular distributions for π^0 and η production at GlueX ($E_x = 0.5 2.5 \text{ GeV}$)
- Measured energies not able to fully constrain the constant term Simulations of **GlueX prototype** in ePIC environment agree with data at E $_{\tau}$ < 0.5 NIM, 596 (2008) 327–337


Energy Resolution - Photons - 17 vs 21 X₀

The fit parameters differ a bit from the previous page (I generate here less low energy points)




More statistics in progress, point at 10 GeV has decent statistics

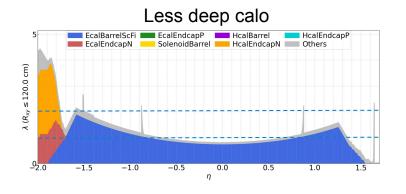
Resolution extracted from a Crystal Ball fit σ

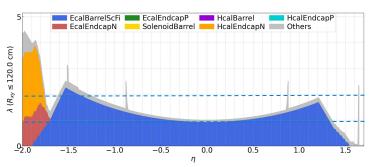
What can we gain?

r_min [cm]	78.3
nb of staves	48
length [cm]	432.5

	15 SciFi/Pb layers	13 SciFi/Pb layers	12 SciFi/Pb layers
	Air Space for A	AstroPix = 1 cm	
Total depth	37.065 cm + 3 cm (Al back plate)	33 cm + 3 cm (Al back plate)	30.843 cm + 3 cm (Al back plate)
Weight of SciFi [kg]	40800	34500	31500
Nb of fibers	1.25M	1.04M	0.94M
	Air Space for A	AstroPix = 2 cm	
Total depth	42 cm + 3 cm	38 cm + 3 cm	35.8 cm + 3 cm
Weight of SciFi [kg]	42400	35900	32700
Nb of fibers	1.29M	10.8M	0.976M
	I	ı	

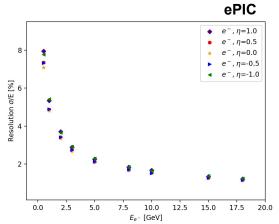
What can we gain?

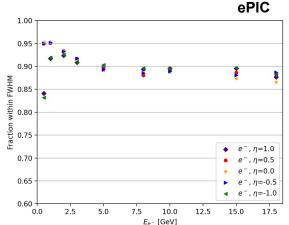

r_min [cm]	78.3
nb of staves	48
length [cm]	432.5

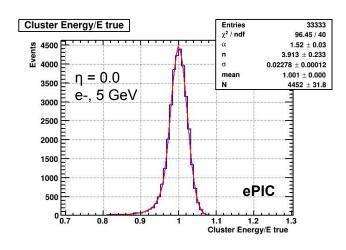

 $310000 \times 4.325 \text{ m} \times 1.09 \text{ } / \text{m} = \sim 1.46 \text{M}$

	15 SciFi/Pb layers	13 SciFi/Pb layers	12 SciFi/Pb layers	
Air Space for AstroPix = 1 cm				
Total depth	37.065 cm + 3 cm (Al back plate)	33 cm + 3 cm (Al back plate)	30.843 cm + 3 cm (Al back plate)	
Weight of SciFi [kg]	40800	34500	31500	
Nb of fibers	1.25M	1.04M	0.94M	
Air Space for AstroPix = 2 cm				
Total depth	42 cm + 3 cm	38 cm + 3 cm	35.8 cm + 3 cm	
Weight of SciFi [kg]	42400	35900	32700	
Nb of fibers	1.29M	10.8M	0.976M	

Summary


- The photon energy resolution at 10 GeV tested with current simulation changes from ~1.4% - ~1.9%
- Energy resolution in the region $\eta = (-1.7, 1.2)$ for electrons driven by tracker (per current simulations)
- Reduction in interaction length:

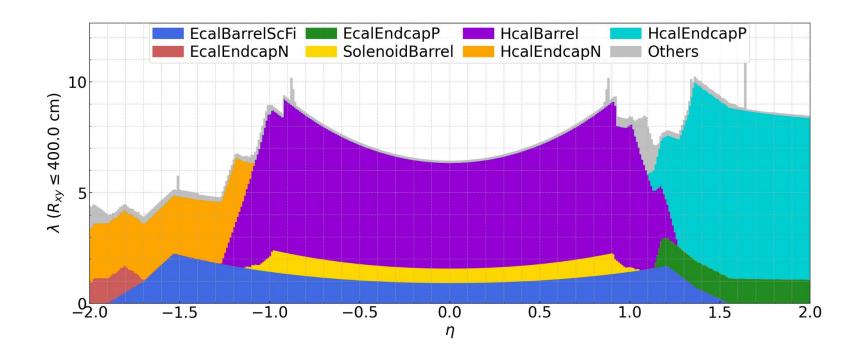




Backup

Energy Resolution - Electrons

Fit parameters


η	a/√(E) [%]	b [%]
-1	5.22(0.02)	0(0.08)
-0.5	4.88(0.01)	0(0.04)
0	4.81(0.01)	0(0.08)
0.5	4.88(0.01)	0(0.04)
1	5.19(0.01)	0(0.06)

Resolution extracted from a crystal ball fit σ

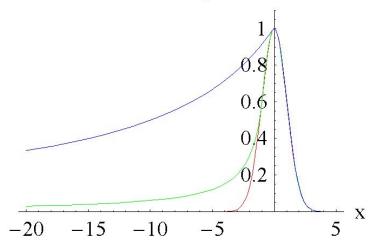
GlueX Pb/ScFi ECal: $\sigma = 5.2\% / \sqrt{E} \oplus 3.6\% \text{ NIM}, A 896 (2018) 24-42$

- 15.5 X_0 , extracted for integrated range over the angular distributions for π^0 and η production at GlueX ($E_x = 0.5 2.5$ GeV)
- Measured energies not able to fully constrain the constant term Simulations of **GlueX prototype** in ePIC environment agree with data at E $_{_{\Upsilon}}$ < 0.5 NIM, 596 (2008) 327–337

Material Scan

Crystal Ball Function

$$f(x; \alpha, n, \bar{x}, \sigma) = N \cdot \begin{cases} \exp(-\frac{(x - \bar{x})^2}{2\sigma^2}), & \text{for } \frac{x - \bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x - \bar{x}}{\sigma})^{-n}, & \text{for } \frac{x - \bar{x}}{\sigma} \leqslant -\alpha \end{cases}$$


where

$$A = \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right)$$

$$B = \frac{n}{|\alpha|} - |\alpha|$$

Examples of the Crystal Ball function.

Crystal Ball Function

 $\bar{x} = 0, \sigma = 1, N = 1$ Red: $\alpha = 10$, Green: $\alpha = 1$, Blue: $\alpha = 0.1$.