Considerations on ITS3 Readout J. Schambach

Slides from Presentations at the ITS3 Plenary in April 2023

ER2 Stiching Map and Sensor Dimensions

Layer 0: 12 x 3 repeated units+endcaps

Layer 1: 12 x 4 repeated units+endcaps

Layer 2: 12 x 5 repeated units+endcaps

Repeated (Stitched) Sensing Unit

TDR Draft

IB Layer Parameters	Layer 0	Layer 1	Layer 2
Sensor length [mm]		265.992	
Sensitive length [mm]		259.992	
Equatorial gap [mm]		1.0	
Sensor azimuthal width [mm]	55.548	74.064	92.58
Radial position [mm]	18	23.9	29.8
Equatorial gap [mm]		1.0	
Sensor azimuthal width [mm]	58.692	78.256	97.820
Radial position [mm]	19.0	25.2	31.5
Equatorial gap [mm]		2.0	
Sensor azimuthal width [mm]	57.684	76.912	96.140
Radial position [mm]	19.0	25.1	31.2

5x12 R0 18.0 mm EG 1.0 mm (full gap)

18,516

55,548

92,58

74,064

CER

ALICE

						-						
+	- +	× +	- +	~ +		~ +		- +		- +	- +	
÷	- +	~ +	- +	≈ +		~ +		- +	w +	- +	~ +	
·	÷ +	u +	u +	u +	u +	υ +	u +	. +	u +	÷ +	v +	
+	- +	u +		w	u +	~ +		- +	u +	- +	~ +	
÷	- +	~ +	× +	~ +	u +	~ +	u +		~ +		- +	
5	21,666 259,992 Sensitive z-length 265,992 Physical z-length											

	21.666 mr	m		`>
1 0.833 mm				
──3.611 mm────>	,			
X PADS ALDO DLDO UNIT BIASING	AUX PADS ALDO DLDO UNIT BIASING	LDO AUX PADS ALDO DLDO UNIT BIASING	AUX PADS ALDO DLDO UNIT BIASING	AUX PADS ALDO DLDO UNIT BIASING
DOMAIN	DOMAIN	DOMAIN	DOMAIN	DOMAIN
MATRIX	MATRIX		MATRIX	MATRIX
160 Mb/s				
		BRO BRO BRO BRO	BRO BRO BRO BRO	BRO BRO BRO BRO
TX@160Mbps	TX@160Mbps	TX@160Mbps	TX@160Mbps	TX@160Mbps
TRO	TRO	TRO	TRO	TRO
% pixel are	a <	;} .100		

Readout Simulations

Optimize *segmentation* and FIFO size

Calculate fraction of hits lost and fraction of incomplete frames

Digital simulation with randomized, uniformly distributed collisions and hit events as input

Introducing physics based stimuli

> Consistent with and slightly less demanding than previous model at first glance

Studied architecture

- Integration time of **100KHz** interaction rate (factor 2) and 4-pixel hits per particle
- 6 power domains, 24 regions, 10 us integration time and 128 FIFO depth
- In light blue, average values
- In light red, average values

POWER North Half Sensor Unit PADS Power unit Power unit Power unit Power unit Power unit WER PADS 160 Mbit/s 160 Mbit/s 160 Mbit/s 160 Mbit/s 160 Mbit/s 160 Mbit/s E output \sim Ī COMMU |∞| data ÷ South Half Sensor Unit OUTPUT Power unit Power unit Power unit Power unit Power unit ŝ 160 Mbit/s 160 Mbit/s 160 Mbit/s 160 Mbit/s 160 Mbit/s 0.15 cm 2.17 cm 0.45 cm 26.6 cm

Left endcap

x12 Repeated Sensor Units Right endcap

IpGBT Capabilities

Communicates with

- The counting room
 - Optical fibre links
- The FE modules / ASICs
 - Electrical links (eLinks)
- The Number and Bandwidth of eLinks is programmable
- For Down eLinks
 - Bandwidth: 80/160/320 Mbps
 - Count: 16/8/4
- For Up eLinks

	Input eLinks (uplink)													
uplink bandwidth [Gbps]		5.12						10.24						
FEC coding	FEC5			FEC12				FEC5		FEC12				
Bandwidth [Mbps]	160 320 640			160	320	640	320	640	1280	320	640	1280		
Maximum number	28	14	7	24	12	6	28	14	7	24	12	6		

Uniform distributions of collisions in bunch crossings and Poisson distribution of particles per collision

System requirements

- Transmit data upstream
- Supply clock and trigger to detector
- Supply and monitor detector power
- Facilitate detector slow control
- Able to withstand radiation and magnetic field

Re-use of current PP-1 infrastructure?

- Current infrastructure:
 - Readout Units (RU)
 - Power Units (PU)
- RUs and PUs most remain in place for ITS2 Outer Barrel
- Consequence of first order data rate estimation:
 - ITS3 (3 layers)-> additional 24 RUs (4 layers -> 44 RUs)
 - Not trivial to find room in cavern close to detector
 - Use of all current spares -> need to produce more RUs
- Increase of link bandwidth [1.2 -> 10.24 Gb/s]
 - Transmission via copper links up to 7m not possible
 - Use of repeaters or electrical-optical transceivers close to detector necessary
- ITS2: conservative powering concept
 - Sensitive to impedance
 - A lot of cables
 - PU dependent on RU for control
- ITS3: utilize recent CERN developments
 - Radiation hard DC/DC converters and control ASIC
 - Regulation close to the detector
 - Drastic reduction of cables due to higher input voltage
- RU and PU replaced by Detector Management Board
 - Avoid use of intelligence (FPGA/ASIC)
 - Make use of in-house expertise (IpGBT/VTRx+/bPols)

ITS2 RUs and PUs

- Services as close as possible to detector
- Volume limited to stay out of acceptance of the forward detectors •
- Close collaboration with the mechanics team at CERN and Grenoble lacksquare

Detector Management Board (DMB) – Data and Control

- Direct connection between detector and optical transceiver (VTRx+)
 - No data processing
 - IpGBT encoding
- Slow control via lpGBT
 E-links to detector
- Multiple boards with boardto-board connections for control and power
 - A master board for control
- Radiation qualified COTS or CERN-developed components
- Backup control link
 - CANbus, RS-485, ...

IpGBT Capabilities

Communicates with

- The counting room
 - Optical fibre links
- The FE modules / ASICs
 - Electrical links (eLinks)
- The Number and Bandwidth of eLinks is programmable
- For Down eLinks
 - Bandwidth: 80/160/320 Mbps
 - Count: 16/8/4
- For Up eLinks

	Input eLinks (uplink)													
uplink bandwidth [Gbps]		5.12						10.24						
FEC coding	FEC5			FEC12				FEC5		FEC12				
Bandwidth [Mbps]	160 320 640			160	320	640	320	640	1280	320	640	1280		
Maximum number	28	14	7	24	12	6	28	14	7	24	12	6		

Detector Management Board (DMB) – Power

- Based on DC-DC converters
 - CERN bPols (48V -> 12V, 12V -> 1.8V)
- Supply detector on both A- and C-side
 - Need load balancing to avoid skewed v-drop
- Main power separated between detector and link/control
 - Allow tripping of detector power at various levels without affecting link/control

- Low current towards infrastructure
- Self-monitoring, controlled by IpGBT \bullet
- Back-end power infrastructure (e.g. CAEN A2554 & CAEN A2518)
 - Located in CR-4 -> neither magnetic nor radiation field

Back-end electronics – Common Readout Unit

- RU responsibilities => to CRU – Trigger Handling Data packing Slow control Reuse of major blocks from current CRU firmware – ONU interface – PCle interface – Datapath wrapper & DMA Frontend replaced by IpGBT-FPGA block + vendor transceiver IP
- New blocks needed for trigger handling, slow control and data packet assembling
 - Similar to ITS2 firmware blocks

Simulation model for data rates

- Goal: realistic estimate of the particle load on the detector in Pb-Pb using some reasonable simplifications
 - Focusing on Layer 0 at 18 mm radius exclusively
 - Beam properties
 - **100 kHz** average interaction rate (safety factor of 2)
 - 1000 out of 3564 bunches interacting, equal interaction probability for each bunch
 - Assuming all bunches of a strobe to be populated for **bunch spacing of 50 ns** (as foreseen for Pb-Pb)
 - **Smearing** of the **vertex z-position** using a Gaussian distribution with sigma = 6 cm
 - Interaction probability (and pile-up) calculation according to a Poisson distribution
 - Physics
 - Random centrality for each interaction using 20 bins (steps of 5% in centrality), using multiplicity corresponding to 0-1% for the most-central bin*
 - Multiplicity density: based on mean multiplicity for centrality* and Poisson distribution**
 - **Pseudo-rapidity dependence table** with 1cm step width*
 - **QED background:** mean of 14 particles / cm² in 10 µs, Poisson distribution**
 - Cluster size:
 - Average cluster size: 1.2 in rφ
 - Geometrical determination of cluster z-extension assuming pixel depth of 10 µm and pixel pitch of 20 µm
 - 30% safety margin
 - Assuming hits to only appear in their individual strobe

• Comparison and unification of our simulations with the ones of the chip design team (WP2) ongoing

* values derived from ITS3-WP1 presentation by F. Schlepper ** to be replaced by a NBD (Negative Binomial Distribution)

Your feedback is vital!

Current bandwidth and CRU estimates

	Baseline (L0 – L	.2)	4 Layers (L0	– L3)
Total link count		144		264
Detector mean bandwidth from simulation*		96		176
Link net bandwidth (Gbit/s)	3.84	7.68	3.84	7.68
Detector net bandwidth	550	1100	1000	2000
CRU need based on link count**		6		11
CRU based on bandwidth***	5	11	10	20
Control	2	2	2	2
Total CRU (net bandwidth)	8	14	14	22
	0	6	6	14
				14+6=20

Preliminary results

*** assuming 110 Gbit/s CRU

output bandwidth

Extra Material

18

Simulation input numbers / event generation

# Simplified physics model	(only	for L	0 @ 18mr	m as th	is is mos	t challen	ging)														
<pre># derived from numbers in</pre>	https:	//indi	co.cern	.ch/eve	nt/123938	3/contrib	utions/5	281416/	/attachm	ents/2	597686/4	484654/h	itDensi	tyRLoad.p	odf						
#	0	1	2 3	34	56	7 8	9 1	0 11	12 13	# d	istance	from the	center	of the l	layer i	n the b	eam dim	ensions			
cParticleDensityPbPbCent=	112,	102,	82, 60	6, 54,	45, 39,	35, 31,	28, 2	6, 24,	22, 20	.]#	/cm^2, 0	-1% cent	rality								
cParticleDensityQED =	14,	13.5,	12, 10.	5, 9,	8, 7.1, (5.6, 6.1,	5.7, 5.	4, 5,	4.7, 4	#	/cm^2, f	or 10 μs	integra	ation tim	ne						
#	0-1,	5-10,	10-15, 3	15-20,	20-25, 25	-30, 30-3	5, 35-40	, 40-45	5, 45-50	, 50-5	5, 55-60	, 60-65,	65-70,	70-75, 7	75-80, 🕸	80-85,	85-90, !	90-95, 9	95-100		
cParticleDensityPbPbMid=	112,	83,	68,	57,	47,	39, 3	1, 25	, 20	Ø , 15	, 1	2, 9	, 7,	5,	з,	2,	1.5,	0.8,	0.5,	0.1]	# /cm^2	
cParticleDensityPbPbMidRel	ative=	[h/cPa	rticleD	ensityP	bPbMid[0]	for h in	cPartic	leDensi	ityPbPbM	id] #	event	multipli	city of	the cent	trality	classe	s relat:	ive to	0-1% (mo	st centra	il)

```
def generate_event():
 particles = np.zeros(cNRegionsZ)
 centralities = [] # multiplity scaling factors for the sub-events
 pileup = rng.poisson(meanStrobeInteractionProbability)
 for subevent in range(pileup):
     centralities.append(cParticleDensityPbPbMidRelative[rng.integers(low=0, high=len(cParticleDensityPbPbMidRelative))])
 for region in range(cNRegionsZ):
     z_cm = int(abs((region + 0.5 - float(cNRegionsZ)/2.) * cRegionLengthZ * 100)) # in cm
     assert z_cm < len(cParticleDensityPbPbCent) and z_cm < len(cParticleDensityQED), f"z position: {z_cm}"
    particleMeanRegion = cParticleDensityQED[z_cm]*StrobeLength/10e-6*cRegionArea*100*100
    particles[region] += rng.poisson(particleMeanRegion)
     for cent in centralities:
         particleMeanRegion = cParticleDensityPbPbCent[z_cm]*cent*cRegionArea*100*100
         particles[region] += rng.poisson(particleMeanRegion)
        #print(f"{particles}, {particles_cent}, {particleMeanRegion}, {cent}, {z}")
 return particles
```


Fiber Network

- Fiber network is similar to ITS2
 Additional 10m + an extra connection
- VTRx+ equals VTRx transmitter minimal output
- Reusing MiniPOD receiver on CRU-side
- Link coding (FEC5 or FEC12) provide additional
- Trunk cables:
 - ITS2
 - Installed: 6 + 2 (backup)
 - IB MPO connectors: 18
 - Backup MPO connectors: 24
 - ITS3
 - 16 (or 26) MPOs for baseline (or 4 layers) assuming remapping
 -> Could use 8 backup MPOs, but remapping difficult to implementation
 - 40 (or 70) MPOs for baseline (or 4 layers) w/o remapping
 -> Installation 2 (or 5) of trunk cables required -> should becor

	Contributor	Power
tnower	Transmitter Output (VTRx+)	
	Receiver Sensitivity (MiniPOD)	
	Coding gain	
	Power budget	
ai margin	Connectors	
	CRU MPO Sockets	
	MPO-LC patch cords 5m (from CRU)	
	MPO to LC 95m (from CR-1 to Mini-Fra)	
	MPO to MPO 8 m (from mini-crate to the Service	
	VIRX+ pigtail with MIT connector	
	Fiber	
	Fiber attenuation - 135m OM3 3.0 dB/km	
	Link penalties	
	TX Radiation Penalty	
ng in the cavern	lotal loss	
ment	Margin	
me baseline		

0.5	dB
0.5	dB

Configuration & calibration - Estimations

•	Currently estimating how	Transactions (per pixel)	Bandwidth (MHz)	Total Transactions	Total Time (s)	Total Time
	much time is needed to	2	10.0	133760	0.548416	13.1619
		2	20.0	133760	0.280896	6.7415
	configure and calibrate	2	40.0	133760	0.147136	3.5312
	detector	4	10.0	267520	1.096832	26.3239
-		4	20.0	267520	0.561792	13.4830
•	It is obvious that	4	40.0	267520	0.294272	7.0625
	broadcasting to multiple	6	10.0	401280	1.645248	39.4859
	chin compare and RSUs	6	20.0	401280	0.842688	20.2245
	Chip segments and NOUS	6	40.0	401280	0.441408	10.5937
	are required					

TRU Bandwidth	SC Bandwidth	Config time	Trigger time	Readout time chip	Readout time CRU	Total time	Config time seq	Total time sec
(MHz)	(MHz)	(s)	(s)	(s)	(s)	(s)	(s)	(s)
160	10	25	55	111	112	304	6050	6329
160	20	14	43	111	112	280	3247	3513
160	40	8	37	111	112	268	1845	2105
320	10	25	55	55	112	248	6050	6273
320	20	14	43	55	112	224	3247	3458
320	40	8	37	55	112	212	1845	2050

1