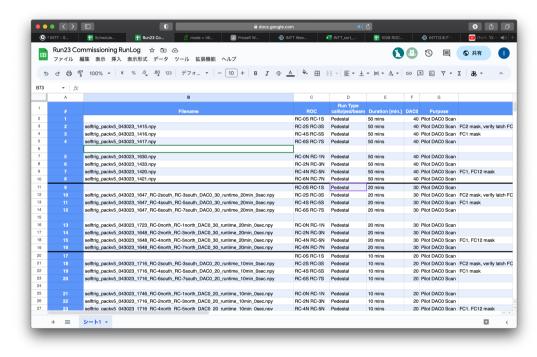
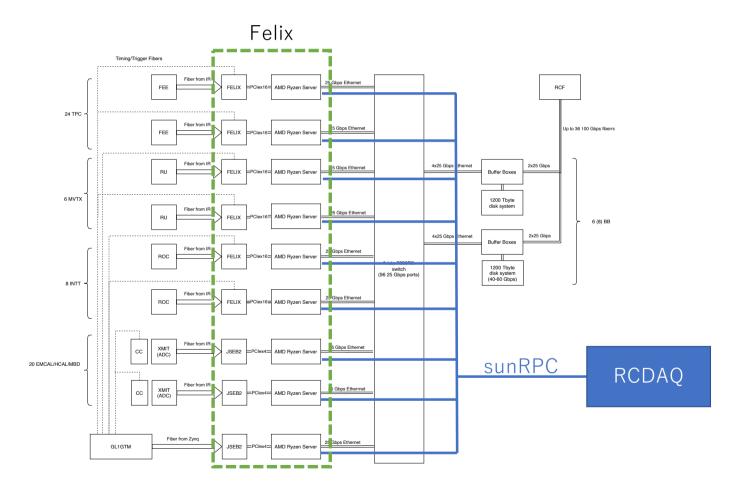
INTT Commissioning Plan

 $4/30 \sim 5/6$ without beam

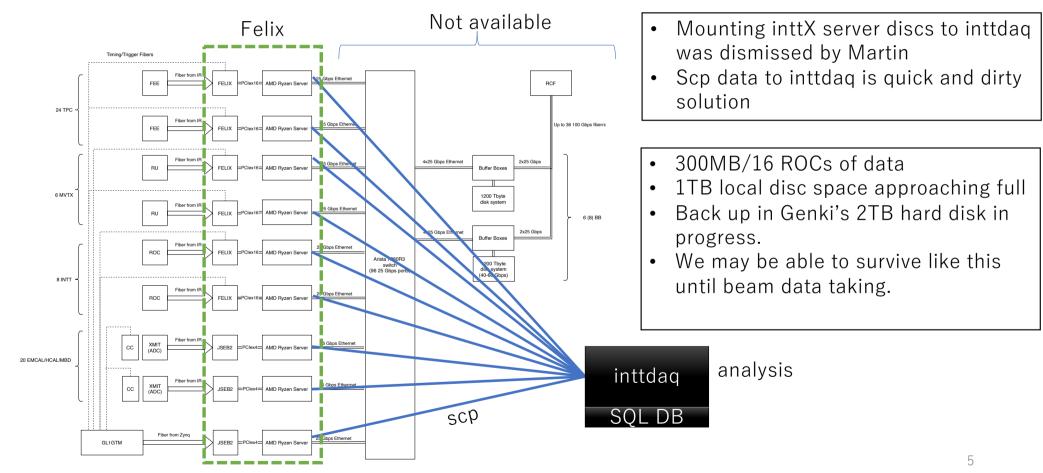
RIKEN/RBRC


Itaru Nakagawa

Data Taking Plan (Week of April 30)


- Establish (semi-)automated hot channel list and mask before the data taking.
 - Take calibration -> mask hot channels -> hot-channel sweeper by Cheng-Wei ✓
 - Take pedestal -> list additional hot channels and mask off ✓
 - Take ~500 counts/strip noise data for all ROCs. ✓
- Noise data for all S+N ROCs by self-trigger for environment dependence study
 - Noise study with light off (3+3 hours) -> Rates analysis by Jaein
 - Noise study with light on/off for a few ROCs. DAC0=15. (1hour)
 - Noise study with magnet door open (3+3 hours) -> This Friday?
- DAC0 scan for noise rate study <u>for threshold optimization practice</u> (3hours) ✓
- DAC scan (<u>First attempt to observe MIP in IR</u>) with self-trigger mode. (>10hours) -> Analysis by Yuka? and Cheng-Wei
 - Planning to to execute pilot run for 2 to 3 settings early this week for software tuning
- Setup Run List spreadsheets to be used until rcdaq->RunLog becomes ready. ✓

Run Log


- Automated run log is the one of the feature of rcdaq though, we need temporary version especially for the commissioning.
- The Run Log as we used for the past beam test is launched.
- Somewhat automation of filename, essential parameters are to be implemented later.

RCDAQ Final Configuration

RCDAQ Final Configuration (Transition Period 4/26~?)

For Future

- Existing data (500GB) in inttdaq are to be backed up in SDCC via the bufferbox hopefully soon.
- We'll announce if data becomes available in SDCC for easier access from offsite crews.
- For the time being, we have to ask offline crews to access inttdag and get data from there.

How to access Inttdag

* Useful reference:

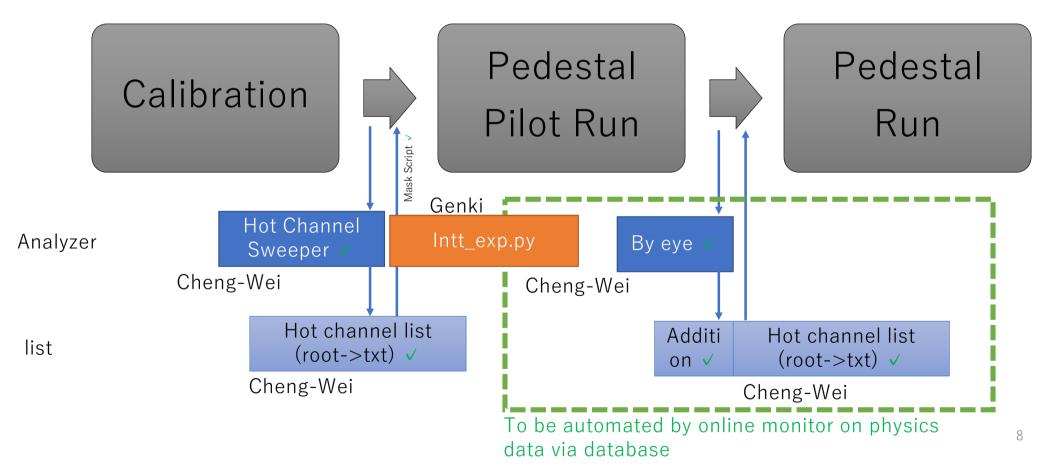
http://www.phenix.bnl.gov/~purschke/ssh_tutorial.pdf

 Copy and paste your public key :~/.ssh/id_rsa.pub to phnxrc@opc0:~/.ssh/authorized_keys

In your local host: ~/.ssh/config

```
Host inttdaq
HostName inttdaq.sphenix.bnl.gov
User inttdev
ForwardAgent yes
IdentityFile ~/.ssh/id_rsa
ForwardX11 yes
ProxyJump
[username]@cssh01.sdcc.bnl.gov,phnxrc@opc0.sphenix.bnl.gov
```

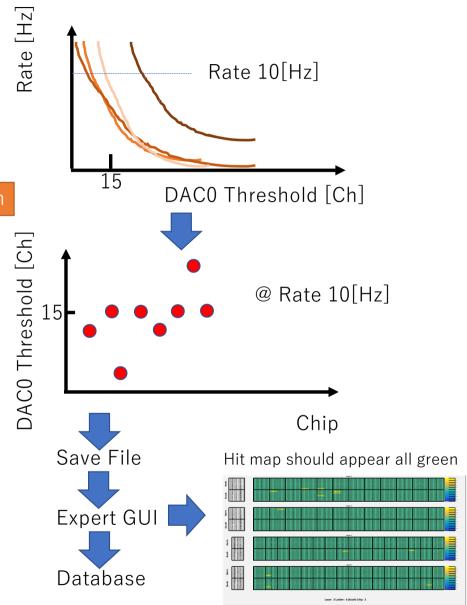
MacBook-Pro-34:∼ itaru\$ ssh inttdaq

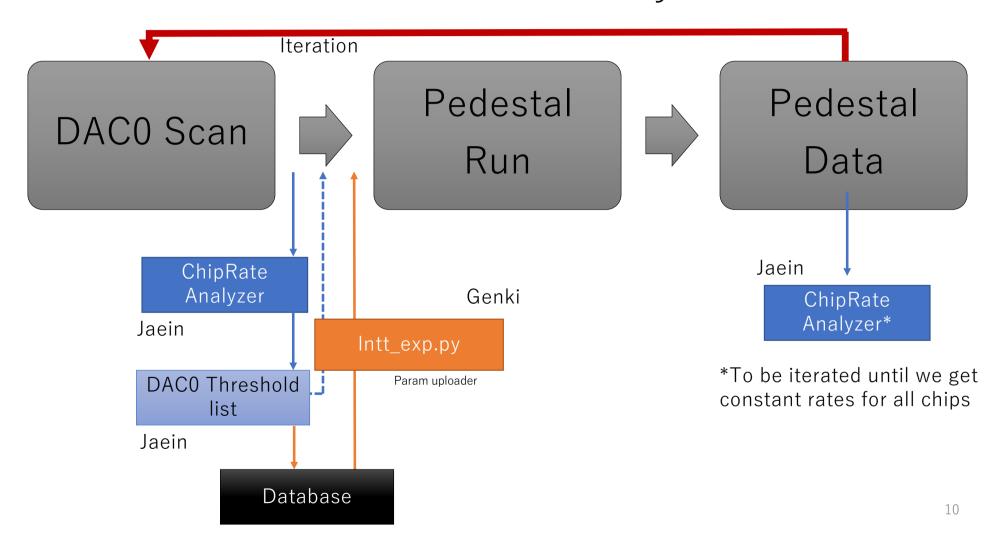


Inttdag login screenshot→

Channels Masking Routine

Status: 94 half ladders are done. 4/30


18 more half ladders to go (to be resolved ladder issue first)

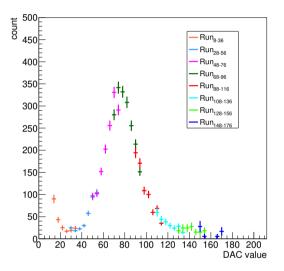

DACO Scan

- Scan DAC0 value one-by-one [20, 19, 18, 17, ···] w/ self-trigger.
- Need develop analysis software to evaluate rates/chip.
- Optimize the DAC0 threshold for each Chip to give the same given rate. Save threshold values (52 x 56) in file loadable to Expert GUI.
- Customize DAC0 threshold setting chip-by-chip (Expert-GUI)
- This is the practice for the DAC0 threshold scan with the beam during commissioning. (S/N is also considered w/ beam)

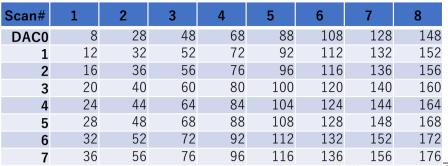
Joseph develops data converter to feed non-prdf data to the online monitor

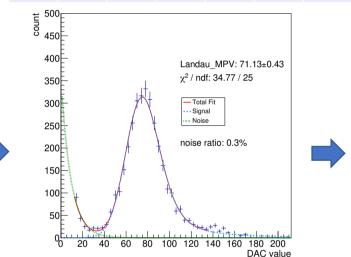
DAC0 Threshold Feedback System

DAC0 Scan

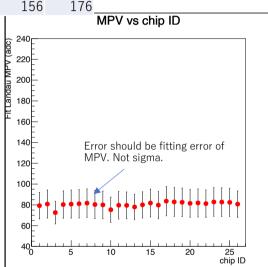

DAC0 condition list

Scan#	1	2	3	4	5	6	7	8*	9*	10*	11*
minutes	5	5	5	5	10	20	60				
DAC0	15	16	17	18	20	30	40	14	13	12	11
DAC1	44	44	44	44	44	44	44	44	44	44	44
DAC2	48	48	48	48	48	48	48	48	48	48	48
DAC3	52	52	52	52	52	52	52	52	52	52	52
DAC4	56	56	56	56	56	56	56	56	56	56	56
DAC5	60	60	60	60	60	60	60	60	60	60	60
DAC6	64	64	64	64	64	64	64	64	64	64	64
DAC7	68	68	68	68	68	68	68	68	68	68	68


^{*}We'll explore DAC0<15 threshold in the 2nd round for the chips


DAC Scan

w/ Cosmic Ray w/ self-trigger



- Chip-by-Chip Base
- Clustering (Optimize offset value)
- Normalization btwn adjacent runs
- Concatenate all runs

 Fitting with Landau+Gaussian convolution function.

Cheng-Wei and Yuka?

Half ladder by half ladder

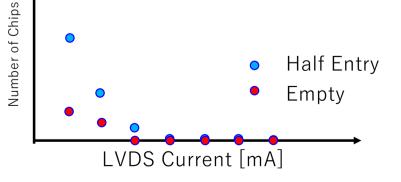
All ladders

Save all fitting parameters: MPV, Width, ...

FelixQuickViewer

- Extend calibration display software to display self-trigger (pedestal) runs as well. Rename it to be FelixQuickViewer.
- Exclude any plots associate with amplitudes for self-trigger run display.
- Calibration/Self-Trigger modes can be distinguished by the file name "calib" or "selftrig" in the macro.

Cheng-Wei?

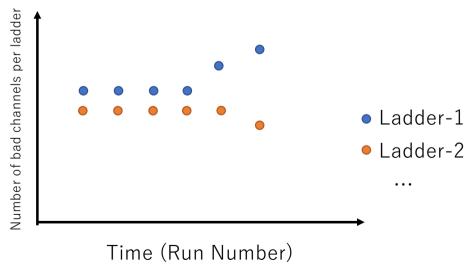

210324_LVDS_Scan.xlsx

LVDS Current			Calibratian Basulta											Data	
[mA]	GUI Setting	Calibration Results											Data		
8mA	255	1	2	3	4	5	6	7	8	9	10	11	12	13	1738
		14	15	16	17	18	19	20	21	22	23	24	25	26	1730
7mA	127	1	2	3	4	5	6	7	8	9	10	11	12	13	1751
		14	15	16	17	18	19	20	21	22	23	24	25	26	1751
6mA	63	1	2	3	4	5	6	7	8	9	10	11	12	13	1755
		14	15	16	17	18	19	20	21	22	23	24	25	26	1733
5mA	31	1	2	3	4	5	6	7	8	9	10	11	12	13	1800
		14	15	16	17	18	19	20	21	22	23	24	25	26	1000
4mA	15	1	2	3	4	5	6	7	8	9	10	11	12	13	1807
		14	15	16	17	18	19	20	21	22	23	24	25	26	1007
3mA	7	1	2	3	4	5	6	7	8	9	10	11	12	13	1813
		14	15	16	17	18	19	20	21	22	23	24	25	26	
2mA	3	1	2	3	4	5	6	7	8	9	10	11	12	13	1818
		14	15	16	17	18	19	20	21	22	23	24	25	26	
1mA	1	1	2	3	4	5	6	7	8	9	10	11	12	13	1824
		14	15	16	17	18	19	20	21	22	23	24	25	26	
1mA	1	1	2	3	4	5	6	7	8	9	10	11	12	13	1829
		14	15	16	17	18	19	20	21	22	23	24	25	26	
		Good			Half	Half Entry Empty				ty					

This measurement was done in NWU before we upgrade regulators for FPHX power on ROCs.

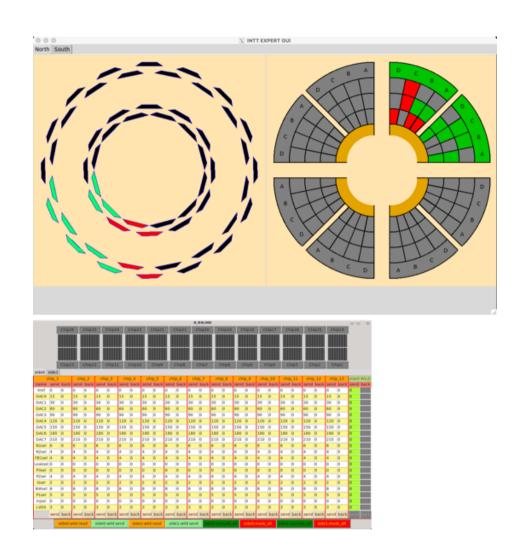
LVDS Current Scan

- Purpose: to learn the lowest limit of LVDS current below 6mA for the safe operation.
- How: Run calibration for each LVDS current setting and counts # of chips which falls into "half entry"/"empty" symptoms. (Calibration Result Analyzer)
- Plot # of "half entry" and "empty" chips as a function of LVDS current.


Stability Monitor

Wei-Che

The purpose of the stability monitor is to visualize something changed and tell when it happened by a glance.


- Texturized summary of calibration results are saved in the calibration database.
- The StabilityMonitor extracts the data from the database and display the history of each key performances per chip.
 - # of bad channels per half ladders, etc
- The monitor should be designed to run in two modes.
 - 1. Calibration mode
 - 2. Physics data mode (Plot average hit rates/half ladder, etc in physics data mode)

- Extract data from database
- Option to select the term (from run# to run#)
- Make plot
- Automated update of plots

Expert GUI Development

- Test RPC function ✓
- Establish RPC functions to all inttX servers
- Test individual DAC0 threshold control works.
- Implement loading DAC0 thresholds from a list file. (Cheng-Wei) ✓
- Automate DAC0 setting to all ladders/chips.

Update verify latch function with the latest

Commissioning without beam Status

- 1. Apply 100V bias (HV GUI). Diagnose any over current channels. ✓
- 2. Power on a ladder by ladder (LV GUIs) and apply 100V bias. Run the calibration. Make sure the results appears in the expected ladder map in the Calibration Display/Analyzer/Monitor. (Misaki/Cheng-Wei) ✓
- 3. Diagnose missing channels and try to recover. ✓
- 4. Tune the alert range of LV/HV voltage/current control panels (alert features of LV/HV GUI). (Maya/Mai, still need fine tuning) ✓
- 5. Random trigger noise run (random external trigger). Debug any large noise half ladder or channels (online monitor). (Joseph, ongoing)
- 6. Save dead/hot channels in the database. (Expert GUI) (Hikaru, Itaru, ongoing)
- 7. Cosmic ray trajectory observation by the event display with the INTT self-trigger and standalone DAQ. If the big-partition and calorimeter trigger are available, we try to take data with the calorimeter external trigger.