
TECHNICAL AND INTEGRATION COUNCIL MEETING

- Klaus Dehmelt
- o TIC Meeting on May 08, 2023

HANDOVER GD/I -> TC

- Handover meeting GD/I → TC and SP
- Identified topics to be pursued in the future
 - Priority list
- List of priority issues (1)
 - Tracking performance study and optimization with reconstruction and background embedding
 - Issues: If pattern recognition fails due to too few hits and massive backgrounds, we must review our endcap tracking. This goes beyond TIC and requires probably a dedicated Task Force
 - Service routing and clearance control
 - * If not enough room and depending on bEMC choice evaluate options to move bEMC and DIRC to larger radii (for imaging solution)

Stony Brook University | The State University of New York

Center for Frontiers in Nuclear Science

HANDOVER GD/I -> TC

- Handover meeting GD/I → TC and SP
- Identified topics to be pursued in the future
 - Priority list
- List of priority issues (2)
 - Forward dRICH geometry optimization
 - Issues: currently dRICH doesn't fit in the setup (overlap)
 → solutions depend on selected bEMC
 - o Apparent low-Q 2 gap in our acceptance between 0.01 and 1 GeV 2 \rightarrow obviously important for physics
 - Mitigation: possible high-resolution tracking right in front of backward EMC
 - o dRICH data reduction needs in streaming DAQ

Stony Brook University | The State University of New York

023
Center for Frontiers in Nuclear Science

SIMULATION CAMPAIGN

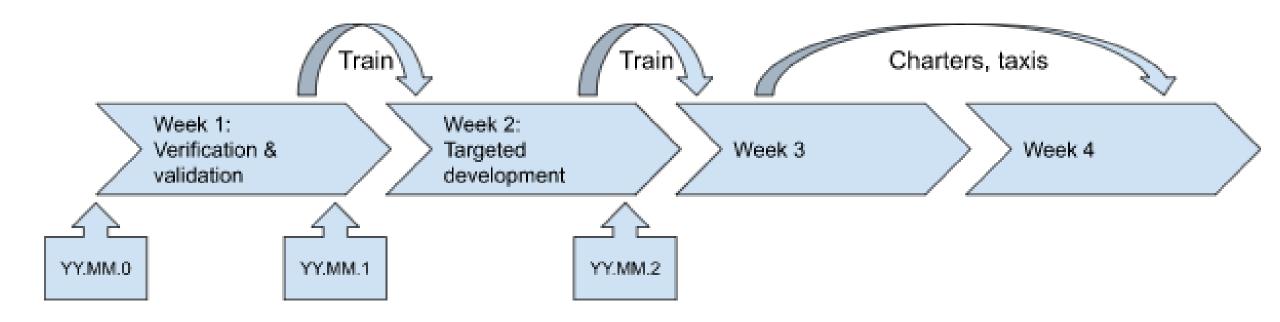
K. Dehmelt

- Re-establish connection between detailed simulations and the evolution of the technical design for the ePIC detector
 - o Simulations of detector geometry, design, and performance
 - O Detector geometry must be implemented in dd4hep
 - Material for supports and services must be incorporated
 - \circ Simulations must include model for background sources \rightarrow beam-gas and synchrotron radiation
 - O Simulations must include model for detector noise and integration time
 - Basic reconstruction software with known performance characteristics

4

SIMULATION CAMPAIGN

- Simulation campaign goals
 - Evolution of the ePIC tracker design
 - Optimization of forward calorimetry design
 - Optimization of the backwards EMCal acceptance
 - Acceptance in Q²
 - Integrate PID in full dd4hep simualtions
 - Quantify the effect of cabling and services



SIMULATION CAMPAIGN

Simulation production strategy → to be presented

DETECTOR SUBSYSTEM COLLABORATIONS

- We are aiming to start a simulation campaign
- I requested a brief status update
 - status of the implementation of geometry/detector services/digitizer
 - o are there open performance issues?
 - o are there any issues to be addressed?
 - o who will be responsible for the tasks?
 - o real material/acceptance vs average material/acceptance

dRICH

hpDIRC

backward RICH (pfRICH)

FFWD

FBKWD - Pair Spectrometer

FBKWD - High-Rate Calorimetry

FBKWD - High-Rate Tracker

Si Trackers

Gaseous Trackers

Backward ECal

Backward HCal

Barrel ECal (Pb/Sci)

Barrel HCal

Forward ECal

Forward HCal

Forward HCal Insert

AC-LGAD TOF (Barrel + Forward)

Stony Brook University | The State University of New York

/08/2023 Center for Fr