

ePIC MPGDs Introduction and Overview

Matt Posik Temple University

□ ePIC Reference Tracking Detector

- Bryce Canyon served as official ePIC reference tracking detector from ePIC formation until June 2023
- Only 1 curved MPGD layer implemented ~ 8 m²

 \circ Concerns

- Not enough hit measurements for track
 reconstruction, in particular in the |η| > 1 regions
- Not enough fast timing hits for matching events to bunches and signal/background discrimination
- Service routing
- Consequently ePIC added MPGDs to the design in June
 2023; now implemented in current Crater Lake geometry

Reference Tracker (up to June) Bryce Canyon

□ Role of MPGDs in ePIC

- Located in outer tracking volume to provide
 - Additional hit points for track reconstruction
 - Fast timing hits for signal/background discrimination (~10-20 ns)
 - Implement enough fast timing layers to from tracklets between (MPGDs and AC-LGADs)
 - Provide precision hit point over large angular range for PID detectors (~150 μm)

□ New Reference Detector: Crater Lake

- Updated configuration converged in early June
- o Implemented into ePIC simulation in time for July campaign
- o <u>First performance looks in late July</u>
- Possible due to the hard work of many

- □ MPGD changes from past reference tracker
 - Split inner MPGD barrel to better accommodate service routing
 - Outer MPGD barrel layer just in front of hpDIRC
 - Two additional MPGD disks in the electron direction
 - Two additional MPGD disks in the hadron direction
 - Added an additional 18 m² of MPGDs

SVT MPGDs ToF (fiducial volume)

□ MPGD Technologies

- Curved layers \rightarrow MicroMegas (MM)
- Planar layers $\rightarrow \mu RWELL$
- Inner Barrel: ~8 m²/ ~30k channels, MicroMegas
- > Outer Barrel: ~15 m²/ ~140k channels, $\mu RWELL$
- Electron Disks: ~1.6 m²/ ~16k channels $\mu RWELL$
- > Hadron Disks: ~1.6 m²/ ~16k channels, $\mu RWELL$

SVT MPGDs ToF (fiducial volume)

eRD108 is the ePIC MPGD R&D program

- Dedicated to developing MPGD technologies for detectors in the reference detector
- Program established when only inner barrel MPGD was part
 of the reference detector
 - Focus was on curved MPGDs
 - no planar MPGDs were part of reference detector

EIC Detector R&D Proprosal

The eRD108 Consortium

July 10, 2023

The eRD108 Consortium

Project ID: eRD108

Project Name: Development of EIC ePIC MPGD Trackers.

Brookhaven National Laboratory (BNL): Craig Woody CEA Saclay: Francesco Bossù, Maxence Vandenbroucke Florida Institute of Technology (FIT): Marcus Hohlmann Istituto Nazionale di Fisica Nucleare (INFN Roma Tor Vergata): Annalisa D'Angelo University of Virginia (UVa): Huong Nguyen, Nilanga Liyanage Temple University (TU): Matt Posik, Bernd Surrow Thomas Jefferson National Accelerator Facility (JLab): Kondo Gnanvo Vanderbilt University (VU): Sourav Tarafdar

- Generic MPGD R&D program geared toward ePIC upgrades/ detector 2
 - Focused on developing thin-gap MPGDs to improve angular resolution over large angular acceptance
 - R&D is critical to current reference detector (Crater Lake)
 if precision hit points are needed for PID detectors
 - Standard (3 mm drift gap) MPGDs in large magnetic field can not provide precise hit information over large angular acceptance.
 - Should be made part of project R&D program

Development of Double-sided Thin-Gap GEM-µRWELL for Tracking at the EIC

Proposal to the FY23 EIC generic detector R&D program

The Thin Gap MPGD (tg-MPGD) Consortium

Project Name: Development of Double-sided Thin-Gap GEM- μ RWELL for Tracking at the EIC **Project Period:** from 10/1/2023 to 09/30/2024

PI & Contact Person: Kondo Gnanvo; kagnanvo@jlab.org Project Members:

FIT: Marcus Hohlmann, Pietro Iapozzuto JLab: Kondo Gnanvo, Seung Joon Lee Temple: Jae Nam, Matt Posik, Bernd Surrow UVa: Huong Nguyen, Nilanga Liyanage VU: Sourav Tarafdar, J.Velkovska, V.Greene Yale U.: Nikolai Smirnov

Table compiled based on institutions interests in ePIC eRD108 and generic Thin-Gap MPGD R&D activities *Does not mean commitment to detector production

Group	MicroMegas	μRWELL
BNL		\checkmark
CEA Saclay	\checkmark	
FIT		\checkmark
INFN Roma Tor Vergata		\checkmark
JLab		\checkmark
Temple University		\checkmark
UVa		\checkmark
Vanderbilt	\checkmark	\checkmark
Yale	\checkmark	

□ 2 MPGD foil production sites (CERN, Saclay)

- CERN $\rightarrow \mu RWELL$ PCBs, readout
- Cea Saclay → MicroMegas detectors
- $\circ~$ Reduce demand on a single foil production facility
- Minimize timeline for institutions to assembly and test
 components from foil production sites
 - Build MicroMegas and µRWELL based detectors in parallel
- Maximize involvement of MPGD community and work force

CERN GDD

Cea Saclay

- Current configuration implemented recently (June-July)
 - Previous reference detector (Bryce Canyon) only had one MPGD layer
 - Micromegas based detectors \rightarrow curved layers
 - $\mu RWELL$ based detectors \rightarrow planar layers
- Strong and active EIC detector development community
- Detector R&D program (eRD-108) based on previous reference detector no planar MPGDs
- There are production and workforce advantages to having two MPGD technologies