

The µRWELL Trackers for ePIC

Kondo Gnanvo

On behalf of the eRD108 Consortium / DSC Gaseous Trackers

TIC weekly Meeting - 08/12/2023

- ***** Is the technology mature for ePIC? Yes and No
- Are there any remaining R&Ds? Yes
- Groups involved in the realization?
- ✤ Any issue with the foreseen ASIC FEE SALSA? → NO

Outline

✤ Overview of µRWELL Trackers in ePIC

- Outer µRWELL Barrel Tracker
- Electron and Hadron End Cap μRWELL discs
- Institutions with expressed interest in ePIC μRWELL trackers
- $\clubsuit R\&D needs for ePIC \mu RWELL trackers$
 - The uRWELL technology R&D needs
 - Targeted R&D effort to achieve ePIC requirements

Overview of MPGD Trackers in ePIC

Inner Cyl Micromegas Barrel Layer CyMBaL

ePIC Outer µRWELL Barrel Tracker

1800 mm

Outer µRWELL module:

- Readout strips: Capacitive-sharing 45-degree U-V strips
- Pitch: 1.2 mm pitch
- 2 (double-sided modules) \times 2 \times 1450 U-V strips = **5800 strips**
- 46×128 -pins flat cables + connectors on the back of the chamber
- 12 FEBs (assuming 8 SALSA chips / FEB) → ~ 6000 channels
- 2 gas lines (inlet and outlet)
- $1 \times \text{HV}$ cable for (2 kV, 1 mA)

eRD108 Consortium – DSC Gaseous Trackers

TIC Weekly Meeting: uRWELL Trackers for ePIC - 08/13/2023

Outer \muRWELL tracker: \rightarrow 2 × 12 modules (24 modules)

- $2 \times 12 \times 12 \times FEBs = 288 FEBs$
- $2 \times 12 \times 46 = 1104 \times 128$ -pins flat cables / connectors
- 142,312 readout channels
- 48 gas lines
- 24 HV cables

ePIC End Cap µRWELL discs

Endcap µRWELL disc module: (double-sided hybrid)

- Readout strips: Capacitive-sharing 45-degree r-phi strips
- Pitch: 1.2 mm pitch
- $\sim 2 \times 1570$ phi-strips + $\sim 2 \times 400$ r-strips = $\sim 4k$ strips
- 32 (2 \times 16) 128-pins flat cables + connectors on the back of the chamber
- 2×4 FEBs (assuming 8 SALSA / FEB) \rightarrow ~ 4 kch
- 2 gas lines (inlet and outlet)
- HV cable for (2 kV, 1 mA)

2 × ePIC Endcap μ RWELL disc trackers: EE (2 × 2 half-discs)

- $2 \times 2 \times 8 \times FEBs = 32 FEBs$
- $2 \times 2 \times 32 = 128 \times 128$ -pins flat cables + connectors
- ~16k readout channels
- 8 gas lines
- 4 HV cables

ePIC µRWELL Tracker

	Barrel Outer µRWELL tracker	Hadron end cap μRWELL disc	Electron end cap µRWELL disc	Total
Number of modules	24	4	4	
R/O channels (pitch 1.2 mm)	140k (24 × 6000)	16k (4 × 4000)	16k (4 × 4000)	172k
Number of FEBs (8 SALSA / FEB)	288 (24 × 12)	32 (4 × 8)	32 (4 × 8)	352
Micro-coax flex 128-pins flat cables (> 2.5 m)	1104 (24 × 46)	128	128	1360
LV lines	288 (24 × 12)	32 (4 × 8)	32 (4 × 8)	352
Firefly per FEB to RDO (12-pairs cables)	288 (24 × 12)	32 (4 × 8)	32 (4 × 8)	352
Gas lines (inlet and outlets)	48 (24 × 2)	8	8	64
HV (distribution through resistive divider)	24	4	4	64

Thin-Gap Hybrid GEM-µRWELL

Jefferson Lab

- Default configuration will have:
 - GEM for pre-amplification and µRWELL amplification
 - 1-mm drift gap (cathode to GEM) and 1-mm induction gap (GEM to uRWELL/RO PCB)
 - 0.5 mm gap will also be explored
 - Double-sided amplification structures.
 - 2D capacitive-sharing strips
- Large area capability:
 - Length of barrel outer module \rightarrow up to 180 cm
 - Radius of end cap disc module → ~50 cm
 - → minimize dead area and material thickness
- Same technology for the barrel outer layer and EE and HE discs
 - Only shape and strip arrangement will be different

Institutions	Contacts	Expressed interest	Anticipated contribution (Here, I am speculating)	Pas and present experience in MPGD
University of Virginia	N. Liyanage, H. Nguyen	Barrel Outer μRWELL Trackers	Design, assembly, commissioning, Installation?	SBS GEMs, PRad GEMs, MOLLER GEMs, CLAS12 µRWELL, EIC R&Ds
Jefferson Lab	K. Gnanvo, D. Weisenberger	Barrel Outer μRWELL Trackers	Design, assembly, commissioning, Installation?	SBS GEMs, PRad GEMs, CLAS12 µRWELL, CLAS12 Micromegas, BoNuS and BoNuS12 rTPC GEMs
Florida Tech	M. Hohlmann	Hadron end cap μRWELL discs	Design, assembly, commissioning, Installation?	CMS GEMs, EIC R&Ds
BNL	C. Woody, A. Kiselev, B Azmoon	Electron end cap µRWELL discs	Design, assembly, commissioning, Installation?	PHENIX HBD, SPHENIX TPC, EIC R&Ds
INFN (Roma Tor Vergata)	A. D'Angelo	end cap $\mu RWELL$ discs	Design, assembly?	CLAS12 μRWELL, EIC R&Ds
Vanderbilt U.	S. Tarafdar	end cap $\mu RWELL$ discs	Design, assembly, commissioning, Installation?	sPHENIX TPC GEM readout, EIC R&Ds
Temple U.	M. Posik, B. Surrow	end cap μRWELL discs Barrel Outer μRWELL	Will let Matt comments	STAR FGT, sPHENIX TPC GEM readout, EIC R&Ds
Korean Institutions contribution	I. Yoon	Production of GEM and μRWELL foils	In kind contribution (GEM foils and μ RWELL PCBs)?	CMS GEMs foil production

Is the technology mature for ePIC? Yes and No

The answer below to this question are only my personal but I hope unbiased opinion based on my experience with the technology so far

***** Is μRWELL mature for ePIC? Yes

Jefferson Lab

- µRWELL as MPGD technology is not fundamentally different from the other 2 mature MPGDs (GEM and Micromegas)
- Amplification structure (µRWELL foil) is based on the same concept and base material as a GEM foil
- Operating concept of µRWELL detector is very similar to Micromegas (single amplification stage) detector unlike triple-GEM
- Concept of resistive MPGD (with DLC) to ensure stable operation of single-stage amplification was pioneered for Micromegas detector (ATLAS Small Well MM, T2K TPC MM readout, CLAS12 MVT...) → so there is nothing fundamentally
- There is a lots of effort in MPGD community in EU, US and Asia to bring the technology to maturity level for large scale experiments

***** Is μRWELL mature for ePIC? No

- Has never been used in an experiment so far so the community can feel a little bit nervous about investing in this option for ePIC
- Challenges and issues are expected, specially for large area devices because it is new → but this is the case for every technology
- Thought there is no show-stopper that needs to cause concerns

Is the technology mature for ePIC? Yes and No

- ✤ CLAS12 recently built a large µRWELL prototype for High Lumi Upgrade of its forward tracker active area: Trapezoid [146 cm – 101 cm] × 54 cm
- ✤ The dimension are similar to the largest module needed for ePIC Barrel Outer Tracker
- The prototype has been under test at JLab since early 2023
- * As expected, some issues with this first attempt for large area \rightarrow the collaboration is investigating

 μ RWELL + capaSh RO PCB

Fully assembled detector

TIC Weekly Meeting: uRWELL Trackers for ePIC - 08/13/2023

We propose to develop double-sided thin-gap hybrid GEM-µRWELL for ePIC?

***** Why Thin-Gap MPGD:

Jefferson Lab

- MPGD still need decent spatial resolution over a wide range of particle's track angle
 - → This is particularly critical for hpDIRC that requires good tracking input parameters
- Limit negative impact of B-field on the position resolution
- Assumption in Crater Lake simulation are not compatible with standard (> 3-mm) gap MPGDs
- **Why hybrid GEM-μRWELL:** Two stage amplifications with GEM pre-amplification
 - To increase detection efficiency of a 1-mm gap detector to > 85%
 - improve signal to noise ratio to achieve spatial resolution even with large pitch readout structures
 - allow very stable operation at large detector gain (far away from the critical voltage limit of each amplification structure)
- ***** Why double-sided Thin Gap GEM-μRWELL:
 - Single hit per module efficiency ~98% with cheap, easily available and non-flammable gas mixture (Ar-CO2)
 - Will also provide 72% double-hit efficiency per module \rightarrow help with track angular resolution for the hpDIRC seed finding
 - Compact detector will fit the 25 mm tight envelope allocated for the barrel outer MPGD layer

Are there any remaining R&Ds? Yes

Jefferson Lab R&D on thin-gap MPGDs – (EIC FY22 Generic R&D)

Development of Thin Gap MPGDs for EIC Trackers

K. Gnanvo^{*1}, S. Greene⁴, N. Liyanage², H. Nguyen², M. Posik³, N. Smirnov⁵, B. Surrow³, S. Tarafdar⁴, and J. Velkovska⁴

¹Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ²University of Virginia, Department Of Physics, Charlottesville VA 22903, USA ³Temple University, Philadelphia, PA 23606, USA ⁴Vanderbilt University, Department of Physics and Astronomy, Nashville, TN 37240, USA ⁵Yale University, Physics Department, New Haven, CT 06520, USA

https://www.jlab.org/sites/default/files/eic_rd_prgm/files/2022_Proposals /20220725_eRD_tgMPGD_Proposal_final_EICGENRandD2022_23.pdf

Fermilab beam test (June 07 - 13, 2023)

- 10 Thin Gap MPGD prototypes tested
 - All three technologies: µRWELL, Micromegas, GEMs
 - Single amplification vs. hybrid amplification
 - Capacitive-sharing R/O vs. zigzag structures

CERN beam test (August 30 – September 06, 2023)

- Test in B field at CERN for E × B measurement :
- B-Field up to 1.5 T

Test beam team:

- Jefferson Lab: Kondo Gnanvo, Seung Joon Lee
- Temple U: Jae Nam
- Vanderbilt U: Sourav Tarafdar
- UVa: Huong Nguyen, Minh Dao, Xinzhan Bai
- Yale U: Nikolai Smirnov
- And the very nice Test beam Facility crew: Todd, JJ, Mandy, Evan, Joe ...

Jefferson Lab **R&D on thin-gap MPGDs** – (EIC FY22 Generic R&D)

3 thin-gap hybrid GEM-µRWELL prototypes already successfully tested in beam

- Proto #1, #2: 1-mm, (0.5-mm) drift) / 1-mm induction with capacitive-sharing X-Y strip readout **
- * Proto #3: 1-mm drift / 0.5-mm induction with 2D zigzag strip readout

Preliminary results:

- Good efficiency in Ar/CO2 \rightarrow 85% for 1-mm drift prototypes and ~ 75% for 0.5-mm drift
- Good S/N was easily achievable \rightarrow good spatial resolution performance expected
- Test in beam at CERN in a couple of weeks
 - Impact of B-field (1.5 T) on spatial resolution performance ٠

This R&D effort need to be supported in a sustained way for the next couple of years for the technology to be ready for ePIC

eRD108 Consortium – DSC Gaseous Trackers

µRWELL with capacitive-sharing strip readout TIC Weekly Meeting: uRWELL Trackers for ePIC - 08/13/2023

2D zigzag strip readout

Are there any remaining R&Ds? Yes

Ongoing R&D on thin-gap hybrid GEM-uRWELL

2 EIC related- R&D programs for the development thin Gap Hybrid GEM-uRWELL technology

Are there any remaining R&Ds? Yes

- * EIC FY24 Project eRD108 Proposals: Design of full-size modules and construction and test of mock-up prototypes
 - Mock-up prototypes to investigated mechanical issues associated with large area. We can not complete the design, fabrication and characterization of full-size working prototypes in a 1-year time frame - This is a minimum 3-year R&D program
- * EIC FY23 Generic R&D Thin Gap Consortium proposal: Medium-size prototypes to fully investigate all challenges related new

approach \rightarrow we want to concentrate on Ar-CO2 gas mixture

Jefferson Lab

Any issue with the foreseen ASIC FEE SALSA? → NO

- SALSA electronics will be used for both CyMBaL and all ePIC µRWELL Trackers
 - The readout electronics is being developed jointly by Saclay and San Paolo groups
 - Don't anticipate any significant difference in the implementation system used by all ePIC MPGD trackers
 - Details like numbers of chips / FEB or needs for long micro-coax flat cables etc ... will be decided based on specific needs and constraints of each sub tracker system i.e. Outer barrel will likely used long micro-coax flat cables, CyMBaL likely not
- ***** We had a very productive meeting with DAQ colleagues on Friday 11th to discuss ePIC MPGD readout and DAQs
 - Indico link: <u>https://indico.bnl.gov/event/20280/</u>
 - Also see Marco talk on SALSA for MPGDs
 - We don't see any issue on this area
- * Need to clarify the space availability for ePIC MPGD trackers cables and services in the forward backward of the detector
 - Looks like very tight space that will make it difficult to integrate all the cables and FEB boards
 - First naïve assumption on next slides assume FEB board → red boxes are place holders for that
 - If not, we will have to rethink a number of assumption in term of volume and material thickness to have FEB on the back of the chambers

eRD108 Consortium – DSC Gaseous Trackers

- Double-sided Thin Gap Hybrid GEM-μRWELL is the best technology candidate for ePIC μRWELL trackers
 - Same technology for Barrel Outer Tracker and Endcap discs
 - Full efficiency, good timing and spatial resolution, stable operation configuration, redundancy and double-hit capability.
- ✤ Need a sustained & dedicated R&D effort to validate the approach
 - Estimate 3-year effort to demonstrate full size working prototypes for both barrel and end cap trackers
 - No show-stopper or any serious concern with the technology.
- ✤ ePIC µRWELL trackers instrumented with SALSA electronics
 - Use same readout electronics and DAQ scheme as CyMBaL
 - Only minor difference in the implementation between subsystms
- ***** Large MPGD community in ePIC Coll. interested in the effort
 - Several US institutions with proven experience in MPGD tracking systems for large scale NP experiments
 - EU (INFN Roma) and Asia (Korean MPGD consortium) institutions

	Barrel Outer µRWELL Tracker	HE μRWELL tracker	HE μRWELL tracker
Technology	Double Thin Gap Hybrid µRWELL	Double Thin Gap Hybrid µRWELL	Double Thin Gap Hybrid µRWELL
2D R/O	2D Capacitive-sharing diagonal X-Y strips	2D Capacitive-sharing diagonal r-phi or U-V strips	2D Capacitive- sharing diagonal R- PHI or U-V strips
Spatial resolution	150 μm for 0 – 45° tracks in 2T	150 μm for 0 – 45° tracks in 2T	150 μm for 0 – 45° tracks in 2T
Timing resolution	~10 ns	~10 ns	~10 ns
Efficiency	98% single hit 70% double hit	98% single hit 70% double hit	98% single hit 70% double hit
Material budget	1 – 2 % X _o /X	1 – 2 % X _o /X	1 – 2 % X _o /X