SiPM news

Roberto Preghenella

News

- we recently received the laser
- will receive soon XYZ linear stage for -30 C operations
- received today new SiPM carrier boards
- irradiation program with protons
- irradiation program with neutrons
- automatic annealing thermal camera
- air-cooled portable Peltier box
- new characterisation setup in Cosenza started
- plans to start next characterisation setup in Salerno

We recently received the new laser

• goal is to measure time resolution of the complete chain

before and after SiPM irradiation and annealing

• will be able to measure relative variation of PDE

- plans also to measure relative variation of PDE vs. incident photon angle
- we have a calibrated diode to try absolute PDE determination on single photon
 - not trivial need to measure absorption of absorbers

• characteristics of the laser

- picosecond pulsed laser
- 401.4 nm
- 25 ps FWHM pulse width
- < 4 ps synchronisation jitter
- up to 20 MHz repetition rate
- > 2 W peak power

system is being commissioned with climatic chamber

- optical components
 - absorption (<< 1 photon/pulse)
 - transport
 - collimation of light
- synchronisation with ALCOR readout system
- precision measurement of reference time

We recently received the new laser

much nicer pulse response wrt. old LED-based system, need to work on sychronisation to fully exploit the laser

We recently received the new laser

light yield at the SiPM is low (we can decrease more) \rightarrow 70 kHz signal / 10 MHz laser \rightarrow < 1% light signal per pulse

XYZ linear translation stage to arrive tomorrow

brand new linear translation stage

- 200 mm stroke on all axes
- to be installed inside the climatic chamber
- translate SiPM prototype matrices wrt. laser
 - or viceversa if more conveniente

• compatible with low-temperature operation

- vacuum technology
- designed to operate down to -40 C

• automatic scan multiple SiPM performance

- time resolution of multiple SiPM
- as a function of the position on the SiPM
 - can use focused light
- relative single-photon PDE

Air-cooled portable Peltier box

designed and realised by us based on Laird cooler assembly

Bologna lab

Bologna lab

airbox in Cosenza

• airbox installed in Cosenza

- after tests in Bologna
- shipped to Cosenza
- system installed on 13-14 April
- good teamwork
 - Bologna
 - Cosenza
 - Salerno

• Cosenza ready to contribute

- to SiPM characterisation
- in charge of proton-energy scan

• 3rd airbox to Salerno

- system will be installed in July
- increase SiPM test capacity

Torino in line for 4th system

 for tests of ALCOR chip with SiPM at low T 2nd airbox unit being tested before shipping to Cosenza →3rd airbox system to be assembled in Salerno in July → Torino in line for the 4th system

Bologna lab

system installed on 13-14 April in Cosenza → ready to contribute to SiPM characterisation

30.3 .0

SiPM irradiation plans 2023

SiPM custom boards for ongoing R&D

35 new boards have been produced arrived today

• new SiPM carriers

- keep same boards designed in 2020
- populate 3 rows
 - 4 sensors / row
- sensors from Hamamatsu
 - 4x S13360-3050
 - 4x S14160-3050
 - 4x S13360-3075
- perform different type of

irradiation/annealing studies

- one carrier board for each study
- keep a minimal statistical sample for each study
 - 4 sensors / type

SiPM custom boards fc

Boards to irradiate at TIFPA in June 2023

• proton energy scan [5 boards]

- o proton energy: 145, 75, 45, 25, 18 MeV
 - will scan 5 values of the hardness factor K
 - K = 1.1, 1.5, 2.0, 2.5, 3.0
- fluence to be defined
 - In <u>fixed proton fluence → damage scales with K</u>

online annealing [2 boards]

- 145 MeV standard energy
- split 10⁹ n_{en} fluence in 10x repeated irradiation-annealing cycles
 - 10⁸ shots
 - 30-minutes long online annealing
- forward and reverse current bias

• offline annealing [7 boards]

- 145 MeV standard energy
- 10⁹ neutron equivalent fluence
- study annealing in the laboratory
 - standard oven (150 h 150 C)
 - forward current
 - reverse current
 - infrared lamp annealing
 - else
- study impact of preventive-annealing
 - standard oven (150 h 150 C)
 - multiple standard cycles (4x cycles)

will do 10⁹ fluence in June 10¹⁰ fluence later this year delivered on the same boards

TIFPA characterisation running programme

Proton Energy Scan

change the number of energy degrader to achieve the desired beam need to study material / thickness and pieces available at TIFPA

Proton Energy Scan

A. Vasielescu & G. Lindstroem

measure 5 points on the

Online annealing

explore solutions for in-situ annealing

Automated multiple SiPM online annealing

Boards to irradiate at LNL in August 2023

• online annealing [2 boards]

- we have 3 days, we can do many rounds
- split 10⁹ n_{eq} fluence in 10x repeated irradiation-annealing cycles
 - 10⁸ shots
 - 30-minutes long online annealing
- forward and reverse current bias

offline annealing [9 boards]

- \circ we have only one access in 2023
- increasing neutron equivalent fluence with standard oven [3 boards]
 - fluence 10⁹ 10¹⁰ 10¹¹
 - standard oven (150 h 150 C)
- study annealing in the laboratory [4 boards]
 - fluence 10⁹
 - forward current
 - reverse current
 - infrared lamp annealing
 - else
- study impact of preventive-annealing [2 boards]
 - fluence 10⁹
 - standard oven (150 h 150 C)
 - multiple standard cycles (4x cycles)

SiPM irradiation at CN-LNL

^{~ 34} mm

SiPM boards are "large" need ~ uniform neutron flux within ~ 30x30 mm²

neutrons with ϑ_{lab} < 5-10 degrees

boards placed at least at 100 mm from the target

estimate of neutron flux at 100 mm

more accurate estimates to be done

- 🔹 beryllium target 🚹
 - will use an existing target at LNL
- 4 MeV deuteron beam
 - 100 nA current on target

~ 6.5 10⁵ n cm^{-s} s⁻¹

irradiation time estimates

- 30 minutes to reach 10⁹ n cm⁻²
 - 4.5 hours to reach 10¹⁰ n cm⁻²
- 43 hours to reach 10¹¹ n cm⁻²
 - \circ too much to be done in 3 days
 - need higher current and/or stay closer (50-70 mm)
 - or integrate in more days

SiPM plans for FY 2023

we have not been originally funded and eventually only partially, but we'll keep the milestones alive as much as possible

Milestones FY 2023 critical results for pre-TDR

- Timing measurement of irradiated (and annealed) sensors (6/2023)
- Comparison of the results achieved with proton and neutron irradiation sources (8/2023)
- Study of annealing in-situ technique with a proposed model selected as baseline for the pre-TDR (9/2023)

• single-photon time resolution

- of full SiPM-ALCOR readout chain
 - no capacity to measure it so far
- critical to set performance simulation

• alternative annealing solutions

- so far done with industrial oven (days)
- address ideas for faster / in-situ recovery
 - exploration started, promising
 - critical to become structured R&D

• irradiation campaigns

- so far only with 150 MeV protons
- critical to collect data on neutron damage
 - might be topologically different
 - effectiveness of annealing
 - test NIEL damage hypothesis
- irradiation needed to test new annealings

• operation at low temperature

- so far characterisation in climatic chamber
 - compare results with TEC (Peltier) cooling
- explore alternative solution to TEC
 - liquid, hybrid (liquid + TEC) approaches

development of new sensors

- within INFN-FBK collaboration agreement
 - critical for procurement risk mitigation
- reduction of DCR
 - field / thickness optimisation
 - exploration of advanced microlensing
- development of "monolithic" SiPM sensor array
 - wire bonded, cost reduction