ePIC TOF DWG -> ePIC TOF DSC

• ePIC AC-LGAD TOF Detector System

- Barrel: 1 cm*500 um strips, ~10 m², ~2M channels
- Forward: $500*500 \text{ um}^2 \text{ pixels}$, $\sim 1.4 \text{ m}^2$, $\sim 6M$ channels

• TOF Detector Working Group

- Convener: Constantin Loizides (ORNL), Frank Geurts (Rice), Wei Li (Rice), Zhenyu Ye (UIC)
- DAQ contact: Tonko Ljubicic (BNL)
- Simulation contact: Nicholas Schmidt (ORNL)
- LGAD consortium, eRD109 (ASIC & Electronics), eRD112 (Sensor & Mechanics)

• TOF Detector Subsystem Collaboration

- Nominated for DSL and Deputy DSL: Zhenyu Ye (UIC), Satoshi Yano (Hiroshima University)
- In the process of collecting institutional interests/responsibilities and defining working groups/packages
- Institutions:

• ...

- USA: Brookhaven National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Ohio State University, Purdue University, Rice University, University of California Santa Cruz, University of Illinois at Chicago
- Japan: Hiroshima University, RIKEN, Shinshu University, University of Tokyo
- India: IIT Mandi, National Institute of Science Education and Research
- Taiwan: National Central University, National Cheng Kung University, National Taiwan University
- China: South China Normal University, University of Science and Technology of China
- 5/12/23

Barrel TOF Layout

More details: https://indico.bnl.gov/event/16765/

ePIC Barrel TOF (~1% X₀)

STAR Intermediate Silicon Tracker

- 288 staves, each with 32 strip sensors wire-bonded to 64 frontend ASICs on low mass Kapton flex and CF support
- Power consumption: ~4 kW for 500µm x 1cm strips (2.4 kW for ASIC, 1.0 kW for DC-DC, 0.6 kW for sensor+cable+RB)

Forward TOF Layout

Forward TOF: dz < 10cm PatchPanels (~8% X₀) Cables

- 212 modules, each with 24 to 96 bump-bonded pixel sensor + ASIC assemblies on Al disk
- Power consumption: 13 kW for 500x500 μ m² pixels (6 kW for 800 x 800 μ m²)

More details: https://indico.bnl.gov/event/17336/

CMS Endcap Timing Layer

LV

BV

TOF On-going/Planned Work

- [1] <u>https://wiki.bnl.gov/EPIC/index.php?title=TOFPID</u>
- [2] https://www.overleaf.com/read/vftxyvjtjrvp
- [3] https://wiki.bnl.gov/conferences/index.php/ProjectRandDFY23

Simulation [1]

- DD4HEP geometry, digitization, reconstruction (ORNL, UIC, Hiroshima, BNL, OSU)
 - Timing resolution requirement
 - Spatial resolution requirement
 - Material budget requirement

Project Engineering and Design (PED) [2]

- Mechanical engineering (NCKU/Purdue, ORNL)
 - Mechanical support and services
 - Cooling system
- Electric engineering (BNL within DAQ WG)
 - Precision clock distribution (<5 ps)
 - Timing chips and streaming readout
 - Readout board

eRD112 [3]

- Sensor (BNL-IO, UCSC, UIC/Fermilab, LANL, ORNL, Rice)
 - BNL-IO, HPK and FBK productions
 - Lab/beam test, irradiation
- Sensor-ASIC integration (UIC)
- Module mechanical structure (NCKU/Purdue)
 - Low-density composite structure

eRD109 [3]

- Frontend ASIC:
 - EICROC (IJCLab/OMEGA, BNL)
 - FCFD (Fermilab)
 - Fast/HPSoC/ASROC (UCSC)
- Frontend electronics
 - Low-mass flexible Kapton PCB (ORNL)
 - Barrel TOF service hybrid (ORNL)
 - Endcap TOF service hybrid (Rice)

TOF in Simulation

- Status of the implementation of geometry/detector services/digitizer
 - Real BTOF material ($\sim 1\%X_0$) within the acceptance -1.4<eta<1.4, missing service outside the acceptance
 - Average FTOF material (5% X_0) within the acceptance 1.7<eta<3.7, missing service outside the acceptance
 - Digitizer has the correct timing and spatial resolution, but no charge sharing
- Are there open performance issues?
 - No open issue but improvements planned (see below)
- Are there any issues to be addressed?
 - Implement real FTOF geometry by Nicholas Schmidt (ORNL)
 - Implement charge sharing by Prithwish Tribedy (BNL) and Simone Mazza (UCSC)
 - Implement TOF services outside the TOF acceptance by TBD
- Real material/acceptance vs average material/acceptance
 - BToF: real material within the acceptance -1.4<eta<1.4, missing service outside the acceptance
 - FTOF: average material within the acceptance 1.7<eta<3.7, missing service outside the acceptance

AC-LGAD Sensor R&D

- Production of medium/large area sensors with different doping concentration, pitch and gap sizes between electrodes and Si thickness to optimize performance by BNL IO and HPK.
 - 1st BNL (06/2021-11/2021): 5-25 mm strips with 500 μm pitch, 100-300 μm electrode width, 50 μm active Si
 - 2nd BNL (06/2022-11/2022): 5-25 mm strips with 500-700 μm pitch, 50-100 um electrode width, 20-50 μm Si
 - 3^{rd} BNL (08/2022-12/2022): pixels with 500-700 μm pitch, various electrode shapes, 20-50 μm Si
 - 1st HPK (06/2022-04/2023): strip+pixel sensors with different electrode width, active thickness and n⁺ doping
 - 4th BNL (02/2023-06/2023): deep gain layer to increase signal amplitudes

3rd BNL Production

Joint HPK Production

eRD112: 1st BNL AC-LGAD Sensor Production

Figure 7: Picture (top) and diagram (bottom) of the FTBF silicon telescope and reference instruments used to characterize AC-LGAD performance. The telescope comprises five pairs of orthogonal strip layers and two pairs of pixel layers, for a total of up to 14 hits per track.

Figure 8: Three AC-LGAD strip sensors wire-bonded on Fermilab test board and tested at FTBF: BNL 5-200 (left), BNL 10-200 (middle) and BNL 25-200 (right). See text for details.

- Timing and spatial resolutions of 1 cm long strip sensors from 1st BNL production demonstrate good performance, making strip sensors a promising candidate for EIC applications.
- Production of medium/large area sensors by BNL IO and HPK with different doping concentration, pitch and gap sizes between electrodes and Si thickness to optimize performance.

C. Madrid et al., arXiv:2211.09698

Frontend ASIC R&D

- R&D Goals
 - 15-20 ps jitter with minimal (1 mW/ch) power consumption, match AC LGAD sensors for EIC
- Plan
 - Continue the ASIC prototyping efforts and utilize the design and experience in ASICs for fast-timing detectors from ATLAS and CMS, and investigate common ASIC design and development for RP/B0 and ToF

EICROC by Omega/Irfu/AGH

- Preamp, discri. taken from ATLAS ALTIROC
- I2C slow control taken from CMS HGCROC
- TOA TDC adapted by IRFU Saclay
- ADC adapted to 8bits by AGH Krakow
- Digital readout: FIFO depth8 (200 ns)

FCFD by Fermilab

Zhenyu Ye @ UIC

- Adapt the Constant Fraction Discriminator (CFD) principle in a pixel paired with a TDC, one time measurement gives the final answer.
- Charge injection consistent with simulations:
 ~30 ps at 5 fC, and <10 ps at 30 fC
- Tested with laser, beta source and beam

Possible Working Group Structure for TOF DSC

• Barrel TOF

- Sensor: sensor, sensor-ASIC integration
- Frontend electronics: ASIC, service hybrid
- Detector Module: module structure, module assembly
- Forward TOF
 - Sensor: sensor, sensor-ASIC integration
 - Frontend electronics: ASIC, service hybrid
 - Detector Module: module structure, module assembly
- Common systems
 - Backend Electronics: power supplies, DAQ system
 - Mechanics: support structure, cooling system
 - Alignment system
 - Slow control
- Detector Performance
 - Simulation and reconstruction
 - Database