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@ Framework for interesting ideas

® topological field theories (Chern-Simons effective actions)

¢ bulk-edge dynamics

® non-commutative geometries, fuzzy spaces



BASIC FEATURES OF 2D IQHE

Charged particle moving on 2d plane (or S?) in strong external magnetic field (Landau

problem)

@ Landau levels, separated by energy gap (~ B)
@ Each Landau level is degenerate

@ Lowest Landau level (LLL) :

Py ~ Z”e—lzlz/2

zZ=x+1iy
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QUANTUM HALL DROPLETS

Many-body problem = quantum Hall droplets

@ Degeneracy of each LL is lifted by confining potential (V = lur?)
@ Exclusion principle — N-body ground state = incompressible droplet

@ Low energy excitations of droplets <= area preserving boundary fluctuations

(edge excitations)

&D

Edge dynamics is collectively described by 1d chiral boson ¢ (WEN, SToNE,..)

ov
Sage = [ (010 +u2009) 000, un 97

] boundary
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ELECTROMAGNETIC FLUCTUATIONS

In the presence of electromagnetic fluctuations

@ The bulk dynamics is described by an effective action
v
Spulk = Scs = o /D €unA 0 A

Scs is not gauge invariant in presence of boundaries.

@ The edge dynamics is described by
Sedge ~ gauged chiral action
Anomaly cancellation between bulk and edge actions,
OSpulk + 0Seqge = 0

@ The bulk effective action Scs captures the response of the system to

electromagnetic fluctuations.

_ 6SC5 _ Le,u,v)\ayA)\

i
J 0A, 27
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EFFECTIVE ACTIONS

What about other transport coefficients?
@ How does the system respond to stress and strain?

@ Calculate stress tensor <= couple theory to gravity (ABanov AND GRoMOV, 2014)

Seff = —/[A—i—(s—i— w] d[A+ (s + )w]—iwdw +--

w = spin connection s=0—LLL,s=1— 1stLL,---

Tij — 2 5ngf nj( il - l] ]l h)
V8 9i
np = Hall viscosity

KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN
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HIGHER DIMENSIONAL QHE

How do these 2d features extend to higher dimensions?

@ QHE on 5§* (HU AND ZHANG, 2001)

@ Generalization to arbitrary even (spatial) dimensions
QHE on CP* (KarABALI AND NAIR, 2002...)
¢ higher dimensionality

¢ possibility of having both abelian and nonabelian magnetic fields
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QHE ON CP*

CP* : 2k dim space, locally parametrized by z;, i = 1,- - - ,k

@ Fubini-Study metric
dz - dz Z-dzz-dz

2— —
4 =03z.9 Otz2°

@ Group coset
r  SU(k+1)
o= U(k)

@ U(k) ~ U(1) x SU(k) => We can have both U(1) and SU(k) background

magnetic fields
@ There are degenerate Landau levels, separated by energy gap.

@ Each Landau level forms an irreducible SU(k + 1) representation, whose

degeneracy and energy is easy to calculate.
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@ CP' = SU(k 4 1)/U(k). We can use (k+ 1) x (k+ 1)-matrixg € SU(k+ 1) asa
coordinate, where

Qikr1 =Zi/V1+2Z-2z, Qripp1=1/V1+Z 2

@ Translations correspond to § — g¢’ with ¢ ~ gh for h € U(k). We define right

translation operators: Ra g=8Ta
@ R, Ry Lor — gauge transformations ( U(k) )

@ R,:, R_; — covariant derivatives (i=1,--- k)

[Riiy R_j] ~ fiaRa, a € U(k)

@ How ¥ transforms under gauge transformations depends on choice of

background fields
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QHE ON CP* : SINGLE PARTICLE SPECTRUM

@ Choose “uniform” U(1) or U(k) background magnetic fields.

UQ1): a~inTr(ba,ng 'dg) = F=da=nQ, Q=XKahler 2— form

SUk): A"~ Tr(t'g"'dg) = F ~R' ~f9 ne

@ Wavefunctions are written in terms of Wigner D-functions

\P{a ~ D{a(g) = ( 1 |§ | « > quantum numbers of states in | rep.
' ’ ~ =

A2 4ok nk pa

REF*w = ——— v R = (Tap ¥ 4

he 2k(k+1) b

10 / 38



QHE ON CP* : SINGLE PARTICLE SPECTRUM

@ Wavefunctions for each Landau level form an SU(k + 1) representation |

U, ~ gl )

\

fixed U(1)g charge ~ 1 and some finite SU(k)r repr. |
I=1,-.-dim] = counts degeneracy within a Landau level

a = internalindex=1,--- N’ = dimJ



QHE ON CP* : HAMILTONIAN

@ Hamiltonian

k

1 o L
= I Z(R+iR—i + R_iR4i)
=1
1 [Csuacﬂ) () = G40 7y — n’k ]
T 2omr2 b2 2 2(k+1)



QHE ON CP* : HAMILTONIAN

@ Hamiltonian

k

1 o L
= I Z(R-HR—i + R_iR4i)
=1
1 SU+1) 7y ~SUK) (Fy n’k

@ Lowest Landau level: R_;¥ =0  Holomorphicity condition

(] ) is lowest weight state)



LLL WAVEFUNCTIONS FOR U(1) MAGNETIC FIELD

For a U(1) magnetic field the LLL wavefunctions can be written in terms of complex

coordinates as

1 ,
n! 2 Zlz7 .z
\Ililiz"'ik = \/N|:.'.' 7 ':| 1 - kﬂ?
il ild(n—s)! | (142 2)2
s = ht+i+-+i, 0<i<n, 0<s<n

They form an SU(k + 1) representation of dimension

o (n+k)!
N =dim] = E
They are degenerate with energy
1wk
C2mr? 2



MATRIX FORMULATION OF LLL DYNAMICS

@ QHE on a compact space M = LLL defines an N-dim Hilbert space

In the presence of confining potential => incompressible QH droplet

@ K states are filled, N — K unoccupied

Density matrix for ground state droplet : o

1
1
1 K
pPo = 1
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0



MATRIX FORMULATION OF LLL DYNAMICS

@ QHE on a compact space M = LLL defines an N-dim Hilbert space
In the presence of confining potential => incompressible QH droplet
@ K states are filled, N — K unoccupied

Density matrix for ground state droplet : o

| |
1 .
1 K
pPo = 1

%
‘ N — K
0

@ Under time evolution: gy — p = U po U’
U=NxN unitary matrix ; ”collective” variable describing excitations within

the LLL



MATRIX FORMULATION OF LLL DYNAMICS

The action for U is
So = / dt Tr [i,sofﬂ all — pollt f/fl]
which leads to the evolution equation for density matrix
dp o
i = V.0l
Sp : universal matrix action
No explicit dependence on properties of space on which QHE is defined, abelian or

nonabelian nature of fermions, etc.

15 / 38



NONCOMMUTATIVE FIELD THEORY

Sp : action of a noncommutative field theory
S0= [ atTe [inl1a.0 — pl V]

:N/dudt [i(pg*uf*&ll) - (pg*UT*V*U)]

po, 0,V — (@, U, V)
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NONCOMMUTATIVE FIELD THEORY

Sp : action of a noncommutative field theory
S0= [ atTe [inl1a.0 — pl V]

:N/dudt [i(pg*uf*&ll) - (po*UT*V*LI)]

po, 0,V — (@, U, V)
————— N— ——
(N x N) matrices symbols

@ symbol: O(Ft) = % 3, Un(X)Om(t) ¥ (¥)
@ AB = A(x)*B(x)
@Tr — N [du
So = exact bosonic action describing the dynamics of LLL fermions
SAKITA, 1993: 2 dim. context

DAS, DHAR, MANDAL, WADIA, 1992
16 / 38
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EDGE EFFECTIVE ACTION FOR v = 1

Large N limit (n — oo) = WZW-like chiral edge action
A. Abelian background magnetic field U(1)

@ Introduce a boson field: U = expi¢

© (X, ), = 5@ OXE 1) GY(E 1) +---

po = constant over the volume occupied by droplet

@ Sy — edge effective action
So~ [ (@0 -+uLe)Lo
oD

(2k — 1) (space) dim chiral action defined on droplet boundary

; derivative along boundary of droplet
L6 = (@Yo, L= { sromneRyeTeeR

— Op in2dim.



EDGE EFFECTIVE ACTION FOR v = 1

B. Nonabelian background magnetic field U(k)

@ Wavefunction is a nontrivial representation of SU(k) : dim(]) = N'.

@ Symbol = (N’ x N’) matrix valued function — action in terms of G € U(N")
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EDGE EFFECTIVE ACTION FOR v = 1

B. Nonabelian background magnetic field U(k)

@ Wavefunction is a nontrivial representation of SU(k) : dim(]) = N'.
@ Symbol = (N’ x N’) matrix valued function — action in terms of G € U(N")

@ The effective edge action is a gauged WZW action in (2k — 1, 1) dimensions.

So :% /BD tr [(GTG +u GTLG) GTLG]
417T tr[~ (i4dGG' +iAG'dG) + 5 s (6'a6)] A (2)“(}(_11)'

ESsz(A = AR = A)
L = (Q7")7#D; = covariant derivative along the boundary of droplet



EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

@ In the presence of gauge fluctuations one starts with a gauged matrix action.
Bt — Dt = Bt + 1A
s— [t [inti'ou - pu'va- o' AG]
——
gauge interactions

In terms of bosonic fields

S:N/dtdutr [ipo*lﬁ*atu — po*UT*(V—i—.A)*U]

QUESTION: How is A related to the gauge fields coupled to the original

fermions?

19 / 38



EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

@ Sisinvariant under
oU=—-ixxU
SAX ) = ONE ) —i (A (V+A)—(V+ A)*N)

@ Since S describes gauge interactions it has to be invariant under usual gauge

transformations
6A, = OuA + 1] A, T A, AL, 6AL =0 2
« N
Background Perturbation

The strategy is to choose

A function(A,,, A,, V)

A function(A, A, A,)

such that the gauge transformation (2) induces 0.4 in (1) ( generalized

Seiberg-Witten map) (KARABALI, 2005)



EFFECTIVE ACTION IN PRESENCE OF GAUGE FLUCTUATIONS

@ In the large N limit the result is S = Segge + Sbuik

Sedge ~ Swzw (A" = A+ A AR = A) Chirally gauged WZW ac-
tion in 2k dim

Spuic ~ SEFL(A) + - - (2k 4 1) dim CS action

A=A+ V,a+ A +A)= background + fluctuations
@ Gauge Invariance = Anomaly Cancellation

(Ssedge 7é 07 5Sbulk 7é 0

6Sedge + 8Spuk =0
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@ What about metric fluctuations? There is another way to construct the bulk
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BULK EFFECTIVE ACTION INCLUDING GAUGE AND METRIC FLUCTUATIONS

@ What about metric fluctuations? There is another way to construct the bulk

action including both gauge and metric fluctuations.
@ The lowest Landau level obeys the holomorphicity condition R_ ;¥ =0
@ The number of normalizable solutions is given by the Dolbeault index.

Index = / td(TeM) A ch(V)
M

@ Consider a fully filled LLL (each particle carries unit charge e = 1):
degeneracy = Dolbeault index = charge

= Dolbeault index density = charge density = Jo

(]
So we can use 55
0Ao
and integrate up to get S. (KARABALI AND NAIR, 2016)

= Jo = Dolbeault index density



BULK TOPOLOGICAL EFFECTIVE ACTION: EXAMPLES

@ CP'=su(2)/u(1);s-th LL

Saq = ;/{(AJF (s+ %)w)d(A—i— (s+ %)w) - 112wdw}

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN
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BULK TOPOLOGICAL EFFECTIVE ACTION: EXAMPLES

@ CP'=su(2)/u(1);s-th LL

Saq = ;/{(A—i— (s+ %)w)d(A—l— (s+ %)w) - 112wdw}

Agrees with ABANOV, GROMOV; KLEVTSOV ET AL; BRADLYN, READ; CAN, LASKIN, WIEGMANN

@ We have general results for arbitrary dimensions, higher Landau levels and

nonabelian magnetic fields (KArABALI AND NAIR, 2016)

@ CP? = SU(3)/U(2); LLL, Abelian gauge field

6 = o {3 sy

~(4+)

(@ + ST(R A fz)] }

w? ~ U(1) part of spin connection; R ~ SU(2) nonabelian part of the curvature.

23 /38



ENTANGLEMENT ENTROPY FOR QHE

@ We divide the system into two regions, D and its complementary D, and define

the reduced density matrix
pp = Trpc |GS) (GS|
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ENTANGLEMENT ENTROPY FOR QHE

@ We divide the system into two regions, D and its complementary D, and define

the reduced density matrix
pp = Trpc |GS) (GS|

where |GS) = [T, ¢k |0).
@ The entanglement entropy is defined as

S = —Trpp log pp

@ We choose D to be the spherically symmetric region of CP* satisfying z - z < R%.
For CP' ~ $?, D is a polar cap around the north pole with latitude angle 6.

R = tan 6/2 via stereographic projection.



ENTANGLEMENT ENTROPY FOR INTEGER QHE

@ The entanglement entropy can also be written as

N
S=-Trpplogpp = — Y [Aulog Au + (1= M) log(1 — Au)]

m=1



ENTANGLEMENT ENTROPY FOR INTEGER QHE

@ The entanglement entropy can also be written as

N
S=-Trpplogpp = — Y [Aulog Au + (1= M) log(1 — Au)]

m=1

@ \’s are eigenvalues of the two-point correlator (PEscHEL, 2003)

rr)—Z\I/ YUu(z), zzZ €D

/D Clro V)7 () () = M ¥ (2)

N = / 0Py
D

where



2D RESULTS

@ For 2d gapped systems

S=cL—~+0(1/L)

L: perimeter of boundary
¢: non-universal constant

~: universal, topological entanglement entropy ; v = 0 for IQHE



2D RESULTS

@ For 2d gapped systems

S=cL—~+0(1/L)

L: perimeter of boundary
¢: non-universal constant

~: universal, topological entanglement entropy ; v = 0 for IQHE

@ For integer QHE on S? = CP! RoDRIGUEZ AND SIERRA, 2009
Forv=1: ¢ =0.204

General results on Kdhler manifolds CHARLES AND ESTIENNE, 2019
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A. QHE on CP* with U(1) magnetic field




ENTANGLEMENT ENTROPY FOR v = 1 ON CP* AND ABELIAN MAGNETIC FIELD

A. QHE on CP* with U(1) magnetic field

The LLL wavefunctions are essentially the coherent states of CP*.

1 .
n' 2 lezlz ce Zlk
Uiigeip =V [.|.' .| '] 172 kﬂ,
il ikl (n —s)! (1+Z-2)2

s = ii+b+--+i, 0<i;<n, 0<s<mn

They form an SU(k + 1) representation of dimension

(n+k)!

N =dim/ = =

The volume element for CP* is

K dPzp--
dp = ak (1+z-z)H1 zk+1 ’ /du_l



ENTANGLEMENT ENTROPY FOR QHE ON CP* AND ABELIAN MAGNETIC FIELD

@ The eigenvalues A = [, ¥* ¥ are given by

L = — (n+k)' /to s+k—1 _p\n—s
Ngois =X = ey | et A=

where to = R?/(1 + R?).

@ The entanglement entropy is

degeneracy
~ (k-1
S —1)!
S = 1 H;
o Si(k—1)!
Hs = [=Xloghs — (1= X)log(1—X)]

@ For large n, this is amenable to an analytical semiclassical calculation for all

k< n.



SEMICLASSICAL TREATMENT FOR LARGE 7
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SEMICLASSICAL TREATMENT FOR LARGE n

1.0¢
0.8
Graph of As vs s
0.6
=1 .. 1
. (0205 Transition (A = 3) ats* ~nto
k=1,k=5
0.2
260 4[‘10 600 800 1000
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SEMICLASSICAL TREATMENT FOR LARGE n

08

Graph of As vs s

06
=1 g
L0=05 Transition (A = %) ats* ~nty

k=1,k=5

04

02

200 400 600 800 1000

v Graph of Hs vs s

0.5
04 — exact
03 . . .
- - - - Gaussian approximation
0.2

0.1

450 560 550 600
Only wavefunctions localized around the boundary of the entangling surface

contribute to entropy.



UNIVERSAL FORM FOR ENTANGLEMENT ENTROPY FOR v = 1

From semiclassical analysis

e % T (10g2)3/2 RZk—l
2K 1+ RO
N— —

geometric area

S~n ~ cr Area

In agreement with k = 1 result by RobriGuEZ AND SIERRA
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From semiclassical analysis

e % T (10g2)3/2 RZk—l
2K 1+ RO
N— —

geometric area

S~n ~ cr Area
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From semiclassical analysis
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@ Formula for entropy becomes universal if expressed in terms of a “phase space”

area instead of a geometric area.
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B. QHE on CP* with U(1) x SU(k) magnetic field

@ Wavefunctions carry SU(k) charge : ¥, , = 1, - --dim] = N’. There are N’

distinct classes of \{*. Calculations long and tedious....

@ Simplifications at large n

1

ke 32
* § — dimJ pt~ 2 7B

Ageom
¢ Degeneracy of LLL: N — dimf Z—T

@ The corresponding phase-space volume in this case is Vphase space = dimf Z—l,c [du
™
S~ E (log 2)3/2 Aphase space

for any dimension and Abelian or non-Abelian background. (KaRABALI, 2020)

@ What about higher Landau levels?
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QHE on §* = CP'; 1st excited Landau level

@ Degeneracy of g-th excited level =n + 2 + 1
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@ Step-like pattern around the transition point.

1st excited level wavefunctions have a node.



1ST EXCITED LANDAU LEVEL

@ The step-like plateau of X causes the broadening of the entropy H; around

A = 1/2. H, cannot be approximated with a simple Gaussian.
07}
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01F

f L L n
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@ Previous semiclassical analysis does not work.

SU=D = 1.65 $="
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What happens when both g = 0 and g = 1 Landau levels are full, namely v = 2?

The two-point correlator now is given by

n+2

Z\I/*O(T)\Ijo + ij*l

There are 21 + 4 eigenvalues: A\) , \f , ALy, s =0,--- ,nand

M 4L [0 = AL 2+ 4002,

3=

where

Shestt = / w0 () WY (1) du
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v =2 CASE
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---forv=1
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COMPARISON BETWEEN g =0, g=1, v =2
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@ QHE on CP* : platform for arbitrary even dimensions

¢ Experimental realizations of 4d QHE using synthetic dimensions

ZILBERBERG ET AL (2015...); BOUHIRON ET AL (2022)
@ LLL dynamics: Universal matrix action — noncommutative bosonic field theory
@ Atlarge N limit — anomaly free bulk/edge dynamics

@ Use index theorems to include gauge and metric perturbations : New response

functions associated with non-Abelian gauge/gravitational fluctuations
@ Entanglement entropy for higher dim QHE on CP*: For v = 1 there is a
universal formula valid for any k, Abelian or non-Abelian background if area is

expressed in terms of phase-space area.
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What are the contributions from non-Abelian droplets?

THANK YOU!
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