EIC Polarimeter Monthly Meeting June 7, 2023

Simple estimates for the ³He breakup test

A.A. Poblaguev

Brookhaven National Laboratory

The ³He *breakup test*

- At RHIC, the proton beam polarimetry, based on detecting of recoil protons from the forward elastic beam scattering off the polarized proton target, was successfully used.
- The same (similar) method is being considered for the hadronic polarimetry at RHIC.
- However, for the ³He beam, there is a concern that the helion breakup can significantly affect result of the polarization measurement.
- To tag and veto the breakup events, a system consisting of scintillator counters V_p and V_d, and ZDC V_n to detect the breakup protons, deuterons, and neutrons, respectively, is considering.
- In Run 23, the veto system is planned to be tested in the APEX sessions.

Schematic explanation of the breakup detection

Displacement of the spectator nucleons in the veto detectors.

 dN/dp_x distribution used was evaluated at HJET for the 10 GeV/n deuteron beam.

Scattered nucleon	Spectators	Detectors
n^{\uparrow}	$p^{\uparrow}p^{\downarrow}$	V_p (× 2)
p^{\uparrow}	$n^{\uparrow}p^{\downarrow}$	V_n, V_p
p^\downarrow	d^{\uparrow}	V _d

- **Schematically** high energy helion can be approximated as a flux of weakly bounded constituent nucleons.
- If one of the nucleons is kicked out in the scattering, the spectator ones continue to move forward as a deuteron or two unbounded nucleons
- The opening angle $\sim p_x/E_{\text{beam}}$ is defined by the internal motion transverse momentum p_x .
- The veto events, i.e., those which trigger V_p , V_d , V_n , may include meson production scatterings of the beam helion.

The breakup events in HJET

- At the HJET, only low momentum transfer, $-t < 0.02 \text{ GeV}^2$ events can be detected.
- For the ³He beam, only following processes can be detected in HJET
 - $h + p_j \rightarrow h + p_j$ (elastic)
 - $h + p_j \rightarrow p + d + p_j$
 - $h + p_j \rightarrow p + p + n + p_j$
- For 100 GeV/n helion beam, the elastic and breakup events cannot be separated in the recoil proton measurements only
- If the recoil proton from the breakup scattering is detected at HJET, then, due to low *t*, all breakup particles can be efficiently detected in the Veto detectors.
- Geometrical acceptance of the HJET detectors is about $f_{\rm acc} \approx 7.4\%$.

The main goal of the ³He *breakup test* should be evaluation of the breakup fraction in the HJET elastic data

$$\omega(T_R = -t/2m_p) = dN_{\text{breakup}}(T_R)/dN_{\text{elastic}}(T_R)$$

AP, Phys. Rev. C, 106, 065202 (2022) AP, Phys. Rev. C, 106, 065203 (2022) AP, arXiv 2305.13099

An estimate (upper limit) of the breakup $(h \rightarrow pd)$ fraction in the elastic $h^{\uparrow}p$ data used to measure ³He beam polarization with HJET. The result is based on the study of the 10-31 GeV/n deuteron beam scattering in HJET,

Simple estimates for the 3He breakup test

$d \rightarrow pn$ breakup in the hydrogen bubble chamber

- The HJET measurement of the deuteron beam breakup is in reasonable agreement with the bubble chamber measurements
- The model used satisfactory describes the HJET measurements (within the experimental accuracy.
- Only a small fraction, $\sim 1.5\%$, of $d \rightarrow pn$ breakups can be detected at HJET.

³He breakup measurements in the hydrogen bubble chamber

V.V. Glagolev et al., C 60, 421 (1993)

 $\sigma_{tot} = 118.0 \pm 1.2 \text{ mb}$ $\sigma_{tagger} = 80 - 90 \text{ mb}$ $\sigma_{el} = 24.2 \pm 1.0 \text{ mb}$ $\sigma_{h \to pd} = 7.29 \pm 0.14 \text{ mb}$ $\sigma_{h \to ppn} = 6.90 \pm 0.14 \text{ mb}$

J. Stepaniak , Acta Phys. Polon. B 27, 2971 (1996)

The effective cross sections in HJET measurements:

$\sigma_{\rm elastic}^{\rm HJET} \approx 11 { m mb}$	
$\sigma_{h o ppn}^{\mathrm{HJET}} < 0.02 \mathrm{~mb}$	(bubble chamber)
$\sigma_{h \to pd}^{\text{HJET}} \sim 0.15 \text{ mb}$	(bubble chamber)
$\sigma_{h \to pd}^{\text{HJET}} \approx 0.25 \text{ mb}$	(deuteron beam in HJET)

Only a very small fraction of the ³He breakup events can be seen in HJET.

 $E_{\text{beam}} = 4.6 \text{ GeV/n}$

Proton-³He elastic scattering at intermediate energies

A. Watanabe et al., Phys. Rev. C 103, 044001 (2021)

- 65 MeV proton beam scattering off the ³He target was studied.
- The scattered protons were detected by the NaI(TI) scintillator at $\theta_{lab.} = 75^{\circ}$.
- The breakup spectrum is consistent with $h \rightarrow pd$ and inconsistent with $h \rightarrow ppn$.

The phase space factor in the breakup event rate:

- $h \rightarrow pd$ $dN/d\Delta \propto (\Delta 5.5 \text{ MeV})^{1/2}$
- $h \rightarrow ppn \quad dN/d\Delta \propto (\Delta 7.7 \text{ MeV})^2$ $\Delta = M_X - M_h$

For low momentum transfer, the 3-body breakup $h \rightarrow ppn$ fraction is strongly suppressed.

Rate estimates

(For 1.2×10^{11} cm⁻² jet density, 10^{11} bunch⁻¹ beam intensity, and 100 ns bunch spacing)

		bunch ⁻¹	Hz
	$V_p V_d V_n$	10 ⁻³	10000
Teggere	V _d	$3 imes 10^{-4}$	3300
laggers	V_p	$7 imes 10^{-4}$	6700
	V _n	$3 imes 10^{-4}$	3300
	prompts	10 ⁻³	10000
HJET	$h + p_j \rightarrow h + p_j$	10 ⁻⁵	100
	$h + p_j \rightarrow p + d + p_j$	$\lesssim 3 imes 10^{-7}$	≲ 3
	$h + p_j \rightarrow p + p + n + p_j$	$< 3 imes 10^{-8}$	< 0.3
_	$V_p V_d V_n$	$\lesssim 3 imes 10^{-7}$	≲ 3
laggers triggered by HJET "elastic"	V _d	$\lesssim 3 imes 10^{-7}$	≲ 3
	Vp	$\lesssim 3 imes 10^{-7}$	≲ 3
	V _n	$< 3 imes 10^{-8}$	< 0.3

• Estimates by order of magnitude only.

• Accidental background was not considered.

The ³He breakup test DAQ

- The breakup test DAQ is incorporated to the HJET DAQ.
- The dedicated FADC board is used for the Tagger Signals.
- The readout trigger is generated by internal logical OR of the internal triggers in 6 HJET FADC boards.
- The DAQ is ready for operation:
 - The readout Veto signals are recorded to the disk in standard HJET format.
 - ✓ The tagger signals are synchronized with the triggers.
 - Simplified analysis of the data (amplitude, time distributions) is provided.
 - ✓ The signals waveform can be viewed.
- However,
 - ✓ The offline analysis (including matching HJET and Tagger signals) is not developed yet.

• The commissioning of the Taggers can be done with **100 GeV** Au beams.

The DAQ Tests with 100 GeV Au Beams

Amplitude distributions in Tagger counters (ZDC ?)

- HJET Trigger (prompt signals)
- No threshold readout for Taggers
- Correlation between taggers amplitudes >95%.

Summary

- Only a very small fraction $\leq 10^{-3}$ of all Tagger hits is relevant to the ³He beam polarization measurement with HJET
- The $h \rightarrow pd$ breakup fraction in the elastic data used to measure the beam polarization is $\leq 3\%$. This events are not detected by ZDC.
- The $h \rightarrow ppn$ breakup fraction is very small $\leq 0.3\%$.
- Proton and deuteron taggers are much more important for the ³He breakup tests than ZDC.
- DAQ is ready for the tests.
- Online data analysis is ready.
- Offline analysis (including matching of HJET and Tagger signals) should be prepared.

Backup

Measurements without scintillators V_d and V_p

- ZDC (V_n) is not sensitive to the dominant breakup mode $h + p_j \rightarrow p + d + p_j$.
- So, only the low intensity breakup component $\sigma_{h \to ppn}^{\text{HJET}} / \sigma_{h \to h}^{\text{HJET}} < 0.3\%$ can be evaluated.
- In one hour running about 1000 inelastic events (if $\sigma_{h \rightarrow ppn}^{\text{HJET}} = 0.3 \text{ mb}$) can be detected.
- This is sufficient to check if our understanding of $h \rightarrow ppn$ breakup rate is correct (unless the accidental rate is too high)
- However, such measurements cannot provide evaluation of the total breakup fraction in the HJET elastic data.

13.5 GeV/c 3 He scattering in the hydrogen bubble chamber

V.V. Glagolev et al., C 60, 421 (1993)

 Table 3. Topological cross sections for the ³He-p interactions

Number of prongs	σ (mb)	
2	27.1 ±0.9	
3	62.5 \pm 1.0	
4	0.82 ± 0.06	
5	25.6 ± 0.5	
6 .	0.07 ± 0.02	
7	1.86 ± 0.09	
<u>≥</u> 8	0.0023 ± 0.008	

 $\sigma_{tot} = 118.0 \pm 1.2 \text{ mb}$ $\sigma_{el} = 24.2 \pm 1.0 \text{ mb}, \quad B = 33.2 \pm 1.3 \text{ GeV}^{-2}$ $\sigma_{h \to pd} = 7.29 \pm 0.14 \text{ mb}$ $\sigma_{h \to ppn} = 6.90 \pm 0.14 \text{ mb}$

From Table 5, one can evaluate the cross section seen by the Veto detectors:

$\sigma_{\rm Veto} \sim 80 {\rm ~mb}$

 $E_{\text{beam}} = 4.6 \text{ GeV}/n$

Table 5. Cross sections of the 3 He-*p* reaction channels at 13.5 GeV/ c

Two prongs		Four prongs	
Channel	σ (mb)	Channel	σ (mb)
$\frac{1}{^{3}\text{He}p\pi^{0}}$	0.83 ± 0.05	$^{3}\text{He}p\pi^{+}\pi^{-}$	0.61 + 0.05
$^{3}\text{He}p\pi^{+}n$	0.25 ± 0.03	$^{3}\text{He}p\pi^{+}\pi^{-}\pi^{0}$	0.04 ± 0.01
$^{4}\text{He}p\pi^{+}\pi^{0}$	0.35 ± 0.04	$^{3}\text{He}\pi^{+}\pi^{+}\pi^{-}n$	0.01 ± 0.01
Charged + X	1.46 ± 0.07	$^{4}\text{He}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	0.03 ± 0.01
0	_	Charged + X	0.13 ± 0.02

Three prongs		Five prongs	
Channel	σ (mb)	Channel	σ (mb)
dpp	7.29 ± 0.14	ρρρρπ-	1.10 ± 0.05
$t p \pi^+$	0.94 ± 0.05	$dpp\pi^+\pi^-$	2.23 ± 0.08
$\hat{d}d\pi^+$	0.05 ± 0.01	$t p \pi^+ \pi^+ \pi^-$	0.55 ± 0.04
$dpp\pi^0$	2.51 + 0.08	$dd\pi^+\pi^+\pi^-$	0.19 + 0.02
$t p \pi^+ \pi^0$	0.09 + 0.02	$pppp\pi^{-}\pi^{0}$	0.97 + 0.05
$dd\pi^+\pi^0$	0.43 ± 0.03	$dpp\pi^+\pi^-\pi^0$	1.24 ± 0.06
pppn	6.90 ± 0.14	$tp\pi^+\pi^+\pi^-\pi^0$	0.003 ± 0.003
$dp\pi^+n$	4.69 ± 0.11	$\hat{d}d\pi^+\pi^+\pi^-\pi^0$	0.12 ± 0.02
$t\pi^+\pi^+n$	0.01 ± 0.01	$ppp\pi^+\pi^-n$	5.32 ± 1.21
dppX	3.68 ± 0.10	$dp\pi^+\pi^+\pi^-n$	1.37 ± 0.06
p p p X	8.18 ± 0.15	$t\pi^+\pi^+\pi^-n$	0.003 + 0.003
$dp\pi^+X$	6.89 + 0.14	$ppp\pi^+\pi^-X$	3.75 + 0.10
$p p \pi^+ X$	14.15 ± 0.19	$dp\pi^+\pi^+\pi^-X$	1.01 ± 0.05
$d\pi^+\pi^+X$	2.32 + 0.08	$p p \pi^+ \pi^+ \pi^- X$	4.31 + 0.11
$p\pi^+\pi^+X$	2.98 ± 0.09	$p\pi^{+}\pi^{+}\pi^{+}\pi^{-}X$	1.05 + 0.05
\hat{C} harged + X	1.36 + 0.06	Charged $+X$	2.35 + 0.08
(the rest)		(the rest)	· · · · · · ·

X – means two or more neutral particles

HJET Time distribution for Yellow 19.7 GeV Au beam

- The elastic rate is pre-defined by $d\sigma/dt$, i.e., by the Si strip angle.
- The tagger signals will have fixed time relative to the bunch.
- It may be interesting to search for correlations between prompts and tagger signals.

Run 23 Timeline

RHIC Run

Weeks	Designation	
0.5	Cool Down from 50 K to 4 K May, 8 ?	
2.0	Set-up mode 1 (Au+Au at 200 GeV)	
0.5	Ramp-up mode 1 (8 h/night for experiments)	
11.5	sPHENIX Initial Commission Time	
9.0 (13.0)	Au+Au Data taking (Physics)	
0.5	Controlled refrigeration turn-off	
24.0 (28.0)	Total cryo-weeks	

sPHENIX Commissioning:

Weeks	Details
2.0	low rate, 6-28 bunches
2.0	low rate, 111 bunches, timing
1.0	low rate, crossing angle checks
1.0	low rate, calorimeter timing
4.0	medium rate, TPC timing, optimization
2.0	full rate, system test, DAQ throughput
12.0	total