Neutrino Oscillations and Theory Biases

Peter B. Denton

BNL Summer Student Lecture
June 22, 2023

Brookhaven

 National Laboratory
About Me

1. Grew up in Michigan
2. Bachelors in physics and math from Rice, ' 10
3. PhD from Vanderbilt, ' 16
4. Year at Fermilab working with Stephen Parke, '15-'16
5. Postdoc at the Niels Bohr International Academy, '16-'18
6. Faculty at Brookhaven, '18-present

About Me

1. Grew up in Michigan
2. Bachelors in physics and math from Rice, ' 10
3. PhD from Vanderbilt, ' 16
4. Year at Fermilab working with Stephen Parke, '15-'16
5. Postdoc at the Niels Bohr International Academy, '16-'18
6. Faculty at Brookhaven, '18-present

Research interests

- Neutrino oscillations
- New physics in neutrinos
- Astroparticle physics
- Black holes

Other interests

- Ultimate frisbee
- Hiking
- Piano
- Photography
- Dark matter

Stop by 2-16 anytime

Key points

- Measuring neutrinos requires the biggest detectors
- Quantum mechanical neutrino oscillations occur on human scales
- Neutrinos unexpectedly have mass
- Neutrinos continue to surprise

Neutrino masses: only left handed neutrinos?

- Neutrinos: fermions only feel the weak (left) interaction
- Measure right handed fermions through electric charge
- Right handed neutrinos won't scatter off anything
- They don't exist?
- Neutrinos are massless?

This was the standard assumption until 1998!

KATRIN 2006

$$
{ }_{1}^{3} H \rightarrow{ }_{2}^{3} H e+e^{-}+\bar{\nu}_{e}
$$

For massless neutrinos, what is the maximum electron energy?

Neutrino masses: kinematic end point is hard

Neutrino masses: kinematic end point is hard

KATRIN 2018

$$
m_{\nu} \lesssim 1 \mathrm{eV}
$$

Neutrino masses: small numbers?

- Other fermions get their mass from the Higgs field

See H. Davoudiasl's lecture on Tuesday, June 14

- "Expect" Yukawa couplings: $y \sim 1$
- Top quark: $y_{t} \sim 1$, but electron: $y_{e} \sim 10^{-6}$
- Neutrinos: $y_{\nu}<10^{-12}$ or nothing if no right handed neutrinos
- Weird?

Big surprise of 1998

- Electroweak understood, mediators (γ, W, Z) found
- Strong understood, mediators (gluon) found
- All fermions detected except tau neutrino (2000), but no surprises expected
- Higgs boson still to be found
- Standard Model looks to be in great shape

Atmospheric neutrinos disappear

Cosmic rays hit the atmosphere, produce π^{+}, μ, and ν_{μ}

SuperKamiokande hep-ex/9807003

Neutrinos really oscillate

1. Neutrinos experience time \Rightarrow must have mass
2. Neutrino oscillate \Rightarrow must mix \& masses must be different

Neutrinos really oscillate

1. Neutrinos experience time \Rightarrow must have mass
2. Neutrino oscillate \Rightarrow must mix \& masses must be different

KamLAND 1303.4667

Daya Bay 1809.02261

Two-flavor neutrino oscillation probability

Only one mixing angle, one $\Delta m_{32}^{2} \equiv m_{3}^{2}-m_{2}^{2}$, no complex phase

Two-flavor neutrino oscillation probability

Only one mixing angle, one $\Delta m_{32}^{2} \equiv m_{3}^{2}-m_{2}^{2}$, no complex phase

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

Same flavor: disappearance

Two-flavor neutrino oscillation probability

Only one mixing angle, one $\Delta m_{32}^{2} \equiv m_{3}^{2}-m_{2}^{2}$, no complex phase

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

Same flavor: disappearance

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

New flavor: appearance

Two-flavor neutrino oscillation probability

Only one mixing angle, one $\Delta m_{32}^{2} \equiv m_{3}^{2}-m_{2}^{2}$, no complex phase

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

Same flavor: disappearance

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

New flavor: appearance
Can easily confirm unitarity:

$$
\sum_{\beta} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=1
$$

Two-flavor neutrino oscillation probability

Only one mixing angle, one $\Delta m_{32}^{2} \equiv m_{3}^{2}-m_{2}^{2}$, no complex phase

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

Same flavor: disappearance

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
$$

New flavor: appearance
Can easily confirm unitarity:

$$
\sum_{\beta} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=1
$$

What angle leads to maximal oscillations?

Atmospheric parameters

[^0]
Maximal mixing: atmospheric neutrinos

Mixing for atmospheric angles seems to be maximal $\theta_{23} \sim 45^{\circ}$

	θ_{23}	θ_{13}	θ_{12}	δ
Quarks	2.4°	0.20°	13°	69°
Leptons	$\sim 45^{\circ}$	X	X	unknown

Was an expectation that mixing angles should be small
Other atmospheric experiments had hints for oscillations, didn't frame it since "mixing angles should be small"

Solar neutrinos

Solar neutrinos

Problem: Too few neutrinos from the sun

Solar neutrinos

Problem: Too few neutrinos from the sun

1. John Bahcall predicted the solar neutrino flux

${ }^{8} \mathrm{~B}$ flux $\propto T^{24}$
J. Bahcall et al. nucl-th/9601044

Solar neutrinos

2. 1960s: Ray Davis's Homestake experiment used chlorine

$$
E_{\nu, \operatorname{tr}}=0.8 \mathrm{MeV}
$$

Homestake ApJ. 496 (1998) 505-526

Solar neutrinos

2. 1960s: Ray Davis's Homestake experiment used chlorine

$$
E_{\nu, \operatorname{tr}}=0.8 \mathrm{MeV}
$$

Homestake ApJ. 496 (1998) 505-526

Measured ν_{e} flux: 2.56 ± 0.23
Predicted: 9.3, 6.4, 7.6

Solar neutrinos

2. 1960s: Ray Davis's Homestake experiment used chlorine

$$
E_{\nu, \operatorname{tr}}=0.8 \mathrm{MeV}
$$

Homestake ApJ. 496 (1998) 505-526

Measured ν_{e} flux: 2.56 ± 0.23

Predicted: 9.3, 6.4, 7.6
Perhaps ${ }^{8} \mathrm{~B}$ is way lower than expected?

Solar neutrinos

2. 1960s: Ray Davis's Homestake experiment used chlorine

$$
E_{\nu, \operatorname{tr}}=0.8 \mathrm{MeV}
$$

Homestake ApJ. 496 (1998) 505-526

Measured ν_{e} flux: 2.56 ± 0.23
Predicted: 9.3, 6.4, 7.6
Perhaps ${ }^{8} \mathrm{~B}$ is way lower than expected?
Perhaps Homestake is wrong?

Solar neutrinos

2. 1960s: Ray Davis's Homestake experiment used chlorine

$$
E_{\nu, \operatorname{tr}}=0.8 \mathrm{MeV}
$$

Homestake ApJ. 496 (1998) 505-526

Measured ν_{e} flux: 2.56 ± 0.23
Predicted: 9.3, 6.4, 7.6
Perhaps ${ }^{8} \mathrm{~B}$ is way lower than expected?
Perhaps Homestake is wrong?
Perhaps both are wrong

Solar neutrinos

3. 1990s: SNO used heavy water

Leased the water from a reactor for 1CAD (+ lots of insurance)

Solar neutrinos

3. 1990s: SNO used heavy water

Leased the water from a reactor for 1CAD (+ lots of insurance)
4. Measured CC, ES, and NC processes for neutrinos from the Sun

Solar neutrinos

3. 1990s: SNO used heavy water

Leased the water from a reactor for 1CAD (+ lots of insurance)
4. Measured CC, ES, and NC processes for neutrinos from the Sun

- Charged current (CC) is ν_{e} only

$$
\nu_{e}+X \rightarrow e^{-}+Y
$$

Electron neutrino disappearance

Solar neutrinos

3. 1990s: SNO used heavy water

Leased the water from a reactor for 1CAD (+ lots of insurance)
4. Measured CC, ES, and NC processes for neutrinos from the Sun

- Charged current (CC) is ν_{e} only

$$
\nu_{e}+X \rightarrow e^{-}+Y
$$

Electron neutrino disappearance

- Elastic scattering (ES) is mostly ν_{e} but also ν_{μ} and ν_{τ}

$$
\nu_{\alpha}+e^{-} \rightarrow \nu_{\alpha}+e^{-}
$$

Solar neutrinos

3. 1990s: SNO used heavy water

Leased the water from a reactor for 1CAD (+ lots of insurance)
4. Measured CC, ES, and NC processes for neutrinos from the Sun

- Charged current (CC) is ν_{e} only

$$
\nu_{e}+X \rightarrow e^{-}+Y
$$

Electron neutrino disappearance

- Elastic scattering (ES) is mostly ν_{e} but also ν_{μ} and ν_{τ}

$$
\nu_{\alpha}+e^{-} \rightarrow \nu_{\alpha}+e^{-}
$$

- Neutral current (NC) does not depend on the flavor

$$
\nu+X \rightarrow \nu+X
$$

Total neutrino flux

Solar neutrinos

3. 1990s: SNO used heavy water

Leased the water from a reactor for 1CAD (+ lots of insurance) 4. Measured CC, ES, and NC processes for neutrinos from the Sun

- Charged current (CC) is ν_{e} only

$$
\nu_{e}+X \rightarrow e^{-}+Y
$$

Electron neutrino disappearance

- Elastic scattering (ES) is mostly ν_{e} but also ν_{μ} and ν_{τ}

$$
\nu_{\alpha}+e^{-} \rightarrow \nu_{\alpha}+e^{-}
$$

- Neutral current (NC) does not depend on the flavor

$\nu+X \rightarrow \nu+X$
Total neutrino flux

Solar neutrinos: matter effect

Presence of a dense electron field modifies oscillations
L. Wolfenstein PRD 17 (1978)
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

Solar neutrinos: matter effect

Presence of a dense electron field modifies oscillations
L. Wolfenstein PRD 17 (1978)
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

Low energy: no matter effect

$$
P_{e e} \simeq 1-\frac{1}{2} \sin ^{2} 2 \theta_{12} \quad P_{e e} \simeq \sin ^{2} \theta_{12}
$$

Borexino
What mixing angle fits this data?

	θ_{23}	θ_{13}	θ_{12}	δ
Quarks	2.4°	0.20°	13°	69°
Leptons	$\sim 45^{\circ}$	X	33°	unknown

Two large angles Surely θ_{13} will be small?!

	θ_{23}	θ_{13}	θ_{12}	δ
Quarks	2.4°	0.20°	13°	69°
Leptons	$\sim 45^{\circ}$	X	33°	unknown

Two large angles Surely θ_{13} will be small?!

Models that Predict All 3 Angles

C. Albright, M-C. Chen hep-ph/0608137

	θ_{23}	θ_{13}	θ_{12}	δ
Quarks	2.4°	0.20°	13°	69°
Leptons	$\sim 45^{\circ}$	8.5°	33°	unknown

Two large angles Surely θ_{13} will be small?!

Models that Predict All 3 Angles

True value:
$\sin ^{2} \theta_{13}=0.02, \theta_{13}=8.5^{\circ}$
Quite large!
C. Albright, M-C. Chen hep-ph/0608137

Complex phase: δ

CP violation \Rightarrow particles and antiparticles act differently

Complex phase: δ

CP violation \Rightarrow particles and antiparticles act differently
To see CPV in oscillations need:

- Three nonzero mixing angles
- Neutrino flavor appearance

This is because CP violation implies T violation

Complex phase: δ

CP violation \Rightarrow particles and antiparticles act differently
To see CPV in oscillations need:

- Three nonzero mixing angles
- Neutrino flavor appearance

This is because CP violation implies T violation
In vacuum at first maximum:

$$
\begin{gathered}
P_{\mu e}-\bar{P}_{\mu e} \approx 8 \pi J \frac{\Delta m_{21}^{2}}{\Delta m_{32}^{2}} \\
J \equiv s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta
\end{gathered}
$$

C. Jarlskog PRL 55, 1039 (1985)

Matter effects are easily accounted for: PBD, S. Parke 1902.07185

Complex phase: δ : how is it measured?

Complex phase: δ : the data

Neutrino mass generation

1. Neutrinos could well get a Dirac mass term from the Higgs like other fermions

With three new right handed neutrinos

Neutrino mass generation

1. Neutrinos could well get a Dirac mass term from the Higgs like other fermions

With three new right handed neutrinos
2. Neutrinos can also get a Majorana mass term since they have no charge

Neutrino mass generation

1. Neutrinos could well get a Dirac mass term from the Higgs like other fermions

With three new right handed neutrinos
2. Neutrinos can also get a Majorana mass term since they have no charge
3. Two mass terms is fine, rich phenomenology

Neutrino mass generation

1. Neutrinos could well get a Dirac mass term from the Higgs like other fermions

With three new right handed neutrinos
2. Neutrinos can also get a Majorana mass term since they have no charge
3. Two mass terms is fine, rich phenomenology
4. Diagonalize from bare masses to physical masses:

$$
m_{\nu} \simeq \frac{m_{D}^{2}}{m_{M}}
$$

Neutrino mass generation

1. Neutrinos could well get a Dirac mass term from the Higgs like other fermions

With three new right handed neutrinos
2. Neutrinos can also get a Majorana mass term since they have no charge
3. Two mass terms is fine, rich phenomenology
4. Diagonalize from bare masses to physical masses:

$$
m_{\nu} \simeq \frac{m_{D}^{2}}{m_{M}}
$$

5. Suppose $m_{D} \sim 100 \mathrm{GeV}$, seems $m_{\nu} \sim 0.01 \mathrm{eV}$:

What Majorana mass works?

Neutrino mass generation

1. Neutrinos could well get a Dirac mass term from the Higgs like other fermions

With three new right handed neutrinos
2. Neutrinos can also get a Majorana mass term since they have no charge
3. Two mass terms is fine, rich phenomenology
4. Diagonalize from bare masses to physical masses:

$$
m_{\nu} \simeq \frac{m_{D}^{2}}{m_{M}}
$$

5. Suppose $m_{D} \sim 100 \mathrm{GeV}$, seems $m_{\nu} \sim 0.01 \mathrm{eV}$:

What Majorana mass works?
6. $\Rightarrow m_{M} \sim 10^{15} \mathrm{GeV}$ at the unification scale!

Seesaw!

Neutrino mass generation

1. Neutrinos could well get a Dirac mass term from the Higgs like other fermions

With three new right handed neutrinos
2. Neutrinos can also get a Majorana mass term since they have no charge
3. Two mass terms is fine, rich phenomenology
4. Diagonalize from bare masses to physical masses:

$$
m_{\nu} \simeq \frac{m_{D}^{2}}{m_{M}}
$$

5. Suppose $m_{D} \sim 100 \mathrm{GeV}$, seems $m_{\nu} \sim 0.01 \mathrm{eV}$:

What Majorana mass works?
6. $\Rightarrow m_{M} \sim 10^{15} \mathrm{GeV}$ at the unification scale!

Seesaw!
We don't know if/how this works though

Neutrino oscillation status: today

Current status

- Discovery of neutrino oscillations added 7+ parameters

Current status

- Discovery of neutrino oscillations added 7+ parameters
- Oscillations can probe 6 of them:

1. Δm_{21}^{2} : solar \& reactor: good
Only have one good measurement of this
2. Δm_{31}^{2} : atmospheric, accelerator, \& reactor: know the magnitude, not the sign
3. θ_{12} : solar \& reactor:

Only have one good measurement of this
4. θ_{13} : reactor: good
5. θ_{23} : atmospheric \& accelerator: okay, don't know if $>45^{\circ}$ or $<45^{\circ}$
6. δ : accelerator: unknown

Current status

- Discovery of neutrino oscillations added 7+ parameters
- Oscillations can probe 6 of them:

1. Δm_{21}^{2} : solar \& reactor: good
Only have one good measurement of this
2. Δm_{31}^{2} : atmospheric, accelerator, \& reactor: know the magnitude, not the sign
3. θ_{12} : solar \& reactor:

Only have one good measurement of this
4. θ_{13} : reactor: good
5. θ_{23} : atmospheric \& accelerator: okay, don't know if $>45^{\circ}$ or $<45^{\circ}$
6. δ : accelerator: unknown

- Seventh parameter is the absolute mass scale: Will be determined in cosmology

Possibly KATRIN, and neutrinoless double beta decay searches

Current status

- Discovery of neutrino oscillations added 7+ parameters
- Oscillations can probe 6 of them:

1. Δm_{21}^{2} : solar \& reactor:

Only have one good measurement of this
2. Δm_{31}^{2} : atmospheric, accelerator, \& reactor:
know the magnitude, not the sign
3. θ_{12} : solar \& reactor:

Only have one good measurement of this
4. θ_{13} : reactor: good
5. θ_{23} : atmospheric \& accelerator: okay, don't know if $>45^{\circ}$ or $<45^{\circ}$
6. δ : accelerator: unknown

- Seventh parameter is the absolute mass scale: Will be determined in cosmology

Possibly KATRIN, and neutrinoless double beta decay searches

Four remaining known unknowns in particle physics: all neutrinos!

Precision is coming to neutrino physics

Discussion time!

Backups

Schrödinger equation

Neutrinos propagate in eigenstates of the Hamiltonian

$$
i \frac{d}{d t}|\nu\rangle=H|\nu\rangle
$$

Schrödinger equation

Neutrinos propagate in eigenstates of the Hamiltonian

$$
i \frac{d}{d t}|\nu\rangle=H|\nu\rangle
$$

In the absence of any interactions $H_{\text {vac }}\left|\nu_{i}\right\rangle=E_{i}\left|\nu_{i}\right\rangle$.

$$
\left|\nu_{i}(L)\right\rangle=e^{-i E_{i} L}\left|\nu_{i}(0)\right\rangle \rightarrow e^{-i m_{i}^{2} L / 2 E}\left|\nu_{i}(0)\right\rangle
$$

i indicates mass eigenstate

Schrödinger equation

Neutrinos propagate in eigenstates of the Hamiltonian

$$
i \frac{d}{d t}|\nu\rangle=H|\nu\rangle
$$

In the absence of any interactions $H_{\text {vac }}\left|\nu_{i}\right\rangle=E_{i}\left|\nu_{i}\right\rangle$.

$$
\left|\nu_{i}(L)\right\rangle=e^{-i E_{i} L}\left|\nu_{i}(0)\right\rangle \rightarrow e^{-i m_{i}^{2} L / 2 E}\left|\nu_{i}(0)\right\rangle
$$

i indicates mass eigenstate
We don't produce neutrinos in eigenstates of the Hamiltonian in vacuum, e.g. mass eigenstates

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i=1}^{3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle \quad \alpha \in\{e, \mu, \tau\}
$$

Schrödinger equation

Neutrinos propagate in eigenstates of the Hamiltonian

$$
i \frac{d}{d t}|\nu\rangle=H|\nu\rangle
$$

In the absence of any interactions $H_{\text {vac }}\left|\nu_{i}\right\rangle=E_{i}\left|\nu_{i}\right\rangle$.

$$
\left|\nu_{i}(L)\right\rangle=e^{-i E_{i} L}\left|\nu_{i}(0)\right\rangle \rightarrow e^{-i m_{i}^{2} L / 2 E}\left|\nu_{i}(0)\right\rangle
$$

i indicates mass eigenstate
We don't produce neutrinos in eigenstates of the Hamiltonian in vacuum, e.g. mass eigenstates

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i=1}^{3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle \quad \alpha \in\{e, \mu, \tau\}
$$

U is a unitary 3×3 matrix which has four degrees of freedom

$$
\text { Unitarity } \Rightarrow 9 \text { dofs, rephasing } \Rightarrow 9-5=4
$$

The probability

The physical observable is the probability: $P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right)$

The probability

The physical observable is the probability: $P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right)$
First calculate the transition amplitude:

1. Project from ν_{α} to ν_{i} via U^{*}
2. Propagate mass state ν_{i}
3. Project from ν_{i} to ν_{β} via U^{T}
4. Sum over all intermediate states*

* coherency must apply

The probability

The physical observable is the probability: $P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right)$
First calculate the transition amplitude:

1. Project from ν_{α} to ν_{i} via U^{*}
2. Propagate mass state ν_{i}
3. Project from ν_{i} to ν_{β} via U^{T}
4. Sum over all intermediate states*

* coherency must apply

$$
\begin{aligned}
\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right) & =\sum_{i=1}^{3} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i} \\
P & =|\mathcal{A}|^{2}
\end{aligned}
$$

The probability

The physical observable is the probability: $P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right)$
First calculate the transition amplitude:

1. Project from ν_{α} to ν_{i} via U^{*}
2. Propagate mass state ν_{i}
3. Project from ν_{i} to ν_{β} via U^{T}
4. Sum over all intermediate states*

* coherency must apply

$$
\begin{aligned}
\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right) & =\sum_{i=1}^{3} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i} \\
P & =|\mathcal{A}|^{2}
\end{aligned}
$$

Discrete symmetries:

$$
T: L \rightarrow-L, \quad C P: \nu \leftrightarrow \bar{\nu} \Leftrightarrow U_{\alpha i} \rightarrow U_{\alpha i}^{*} \Leftrightarrow E \rightarrow-E
$$

Assume CPT is conserved: $P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}\right)$

The probability

The physical observable is the probability: $P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right)$
First calculate the transition amplitude:

1. Project from ν_{α} to ν_{i} via U^{*}
2. Propagate mass state ν_{i}
3. Project from ν_{i} to ν_{β} via U^{T}
4. Sum over all intermediate states*

$$
\begin{aligned}
\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; L, E\right) & =\sum_{i=1}^{3} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i} \\
P & =|\mathcal{A}|^{2}
\end{aligned}
$$

Discrete symmetries:

$$
T: L \rightarrow-L, \quad C P: \nu \leftrightarrow \bar{\nu} \Leftrightarrow U_{\alpha i} \rightarrow U_{\alpha i}^{*} \Leftrightarrow E \rightarrow-E
$$

Assume CPT is conserved: $P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}\right)$
Assume that E and direction don't change during propagation

Coherent propagation

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties
- Literature is somewhat inconsistent in how to do this

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties
- Literature is somewhat inconsistent in how to do this
- All approaches give same answer

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties
- Literature is somewhat inconsistent in how to do this
- All approaches give same answer
- Nearly all cases of oscillations are known to be coherent

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties
- Literature is somewhat inconsistent in how to do this
- All approaches give same answer
- Nearly all cases of oscillations are known to be coherent
- Exceptions:

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties
- Literature is somewhat inconsistent in how to do this
- All approaches give same answer
- Nearly all cases of oscillations are known to be coherent
- Exceptions:
- Solar neutrinos: decohere from sun to Earth

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties
- Literature is somewhat inconsistent in how to do this
- All approaches give same answer
- Nearly all cases of oscillations are known to be coherent
- Exceptions:
- Solar neutrinos: decohere from sun to Earth
- Astrophysical neutrinos: (galactic or extragalactic) decohere

Coherent propagation

- Neutrino oscillations requires all 3 wavefunctions to overlap
- Properly calculating this requires QFT
- Need to integrate over production region
- Need to account for detection uncertainties
- Literature is somewhat inconsistent in how to do this
- All approaches give same answer
- Nearly all cases of oscillations are known to be coherent
- Exceptions:
- Solar neutrinos: decohere from sun to Earth
- Astrophysical neutrinos: (galactic or extragalactic) decohere
- Decohered probabilities are easy!

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i=1}^{3} P_{\alpha i} P_{i i} P_{i \beta}=\sum_{i=1}^{3}\left|U_{\alpha i}\right|^{2}\left|U_{\beta i}\right|^{2}
$$

Everything is at the probability level not the amplitude level This is the same expression as oscillation averaged probabilities

Three flavor

Three angles, three Δm^{2} (two are close), one complex phase

Three flavor

Three angles, three Δm^{2} (two are close), one complex phase
It is less easy to show that:

$$
\begin{aligned}
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1 & -4\left|U_{\alpha 1}\right|^{2}\left|U_{\alpha 2}\right|^{2} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \\
& -4\left|U_{\alpha 1}\right|^{2}\left|U_{\alpha 3}\right|^{2} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \\
& -4\left|U_{\alpha 2}\right|^{2}\left|U_{\alpha 3}\right|^{2} \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
\end{aligned}
$$

Many different ways to write these probabilities

Three flavor: appearance

$$
\begin{aligned}
& P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=-4 \Re\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 2}^{*} U_{\beta 2}\right] \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \\
&-4 \Re\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 3}^{*} U_{\beta 3}\right] \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \\
&-4 \Re\left[U_{\alpha 2} U_{\beta 2}^{*} U_{\alpha 3}^{*} U_{\beta 3}\right] \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right) \\
&+8 \Im\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 2}^{*} U_{\beta 2}\right] \sin \left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \sin \left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \sin \left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
\end{aligned}
$$

Three flavor: appearance

$$
\begin{aligned}
& P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=-4 \Re\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 2}^{*} U_{\beta 2}\right] \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \\
&-4 \Re\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 3}^{*} U_{\beta 3}\right] \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \\
&-4 \Re\left[U_{\alpha 2} U_{\beta 2}^{*} U_{\alpha 3}^{*} U_{\beta 3}\right] \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right) \\
&+8 \Im\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 2}^{*} U_{\beta 2}\right] \sin \left(\frac{\Delta m_{21}^{2} L}{4 E}\right) \sin \left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \sin \left(\frac{\Delta m_{32}^{2} L}{4 E}\right)
\end{aligned}
$$

Final coefficient:

$$
8 \Im\left[U_{\alpha 1} U_{\beta 1}^{*} U_{\alpha 2}^{*} U_{\beta 2}\right] \equiv 8 J=8 s_{12} c_{12} s_{13} c_{13}^{2} s_{23} c_{23} \sin \delta
$$

This is the same for all appearance channels (up to sign) C. Jarlskog PRL 55 (1985)

$$
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}
$$

More on probabilities

More on probabilities

1. The Jarlskog term is the only term $\propto \sin \delta$

More on probabilities

1. The Jarlskog term is the only term $\propto \sin \delta$
2. The Jarlskog term is the only term $\propto L^{3}$
all others $\propto L^{2}$
$\Rightarrow \delta$ is hard to measure

More on probabilities

1. The Jarlskog term is the only term $\propto \sin \delta$
2. The Jarlskog term is the only term $\propto L^{3}$
all others $\propto L^{2}$
$\Rightarrow \delta$ is hard to measure
3. $\nu \rightarrow \bar{\nu} \Rightarrow U \rightarrow U^{*}$ which is $\delta \rightarrow-\delta$

More on probabilities

1. The Jarlskog term is the only term $\propto \sin \delta$
2. The Jarlskog term is the only term $\propto L^{3}$
all others $\propto L^{2}$
$\Rightarrow \delta$ is hard to measure
3. $\nu \rightarrow \bar{\nu} \Rightarrow U \rightarrow U^{*}$ which is $\delta \rightarrow-\delta$
4. $\delta \rightarrow-\delta \Rightarrow L \rightarrow-L$ or $E \rightarrow-E$

Care is required because of the matter effect

More on probabilities

1. The Jarlskog term is the only term $\propto \sin \delta$
2. The Jarlskog term is the only term $\propto L^{3}$
all others $\propto L^{2}$
$\Rightarrow \delta$ is hard to measure
3. $\nu \rightarrow \bar{\nu} \Rightarrow U \rightarrow U^{*}$ which is $\delta \rightarrow-\delta$
4. $\delta \rightarrow-\delta \Rightarrow L \rightarrow-L$ or $E \rightarrow-E$

Care is required because of the matter effect
5. This follows from CPT. CP: $\delta \rightarrow-\delta$ and T is $L \rightarrow-L$

Matter effect causes apparent CPT violation

Matter effect: constant

Call Schrödinger equation's eigenvalues m_{i}^{2} and eigenvectors U_{i}.

$$
\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i=1}^{3} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i} \quad P=|\mathcal{A}|^{2}
$$

Matter effect: constant

Call Schrödinger equation's eigenvalues m_{i}^{2} and eigenvectors U_{i}.

$$
\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i=1}^{3} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i} \quad P=|\mathcal{A}|^{2}
$$

In matter ν 's propagate in a new basis that depends on $a \propto N_{e} E_{\nu}$.

L. Wolfenstein PRD 17 (1978)

Matter effect: constant

Call Schrödinger equation's eigenvalues m_{i}^{2} and eigenvectors U_{i}.

$$
\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sum_{i=1}^{3} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i} \quad P=|\mathcal{A}|^{2}
$$

In matter ν 's propagate in a new basis that depends on $a \propto N_{e} E_{\nu}$.

L. Wolfenstein PRD 17 (1978)

Eigenvalues: $m_{i}^{2} \rightarrow{\widehat{m^{2}}}_{i}(a)$
Eigenvectors are given by $\theta_{i j} \rightarrow \widehat{\theta}_{i j}(a) \quad \Leftarrow \quad$ Unitarity

Hamiltonian dynamics

$$
H_{\text {flav }}=\frac{1}{2 E}\left[U\left(\begin{array}{ccc}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right] .
$$

Hamiltonian dynamics

$$
\begin{gathered}
H_{\text {flav }}=\frac{1}{2 E}\left[U\left(\begin{array}{lll}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{lll}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right] \\
U=\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
& 1 & \\
-s_{13} e^{i \delta} & & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & 1
\end{array}\right)
\end{gathered}
$$

Hamiltonian dynamics

$$
\begin{gathered}
H_{\text {flav }}=\frac{1}{2 E}\left[U\left(\begin{array}{lll}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{lll}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right] \\
U=\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
& \text { For more on parameterizations see: PBD, R. Pestes 2006.09384 } \\
-s_{13} e^{i \delta} & 1 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & 1
\end{array}\right)
\end{gathered}
$$

Hamiltonian dynamics

$$
H_{\text {flav }}=\frac{1}{2 E}\left[U\left(\begin{array}{ccc}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{lll}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right]
$$

$$
U=\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
& 1 & \\
-s_{13} e^{i \delta} & & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & 1
\end{array}\right)
$$

Find eigenvalues and eigenvectors:

$$
H_{\text {flav }}=\frac{1}{2 E} \widehat{U}\left(\begin{array}{lll}
0 & & \\
& \widehat{m^{2}} 21 & \\
& & \Delta \widehat{m}^{2}
\end{array}\right) \widehat{U}^{\dagger}
$$

H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) 273
K. Kimura, A. Takamura, H. Yokomakura hep-ph/0205295

PBD, S. Parke, X. Zhang 1907.02534

Matter effect: varying

Solar neutrinos in an adiabatically changing matter potential Solution $=$ MSW effect
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

Matter effect: varying

Solar neutrinos in an adiabatically changing matter potential Solution $=$ MSW effect
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

- Potential changes slowly \Rightarrow neutrinos remain in same state

Matter effect: varying

Solar neutrinos in an adiabatically changing matter potential Solution $=$ MSW effect
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

- Potential changes slowly \Rightarrow neutrinos remain in same state
- In center of the sun $\nu_{e} \approx \nu_{2}$

Matter effect: varying

Solar neutrinos in an adiabatically changing matter potential Solution $=$ MSW effect
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

- Potential changes slowly \Rightarrow neutrinos remain in same state
- In center of the sun $\nu_{e} \approx \nu_{2}$
- Neutrinos leave sun as ν_{2}

Matter effect: varying

Solar neutrinos in an adiabatically changing matter potential Solution $=$ MSW effect
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

- Potential changes slowly \Rightarrow neutrinos remain in same state
- In center of the sun $\nu_{e} \approx \nu_{2}$
- Neutrinos leave sun as ν_{2}
- Probability to detect ν_{e} is simply:

$$
P_{e e}=P_{e 2}^{\odot} P_{22}^{\mathrm{vac}} P_{2 e}^{\mathrm{det}} \approx 1 \times 1 \times\left|U_{e 2}\right|^{2} \approx \sin ^{2} \theta_{12}
$$

Bonus question: do we see more solar neutrinos at day or night?

Matter effect: varying

Solar neutrinos in an adiabatically changing matter potential Solution $=$ MSW effect
S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26

- Potential changes slowly \Rightarrow neutrinos remain in same state
- In center of the sun $\nu_{e} \approx \nu_{2}$
- Neutrinos leave sun as ν_{2}
- Probability to detect ν_{e} is simply:

$$
P_{e e}=P_{e 2}^{\odot} P_{22}^{\mathrm{vac}} P_{2 e}^{\mathrm{det}} \approx 1 \times 1 \times\left|U_{e 2}\right|^{2} \approx \sin ^{2} \theta_{12}
$$

Bonus question: do we see more solar neutrinos at day or night?
Neutrinos in SNe experience MSW effect too, but they also experience neutrino-neutrino interactions

Propagation in SNe is much more involved

Dirac mass term

If ν_{R} (or $\bar{\nu}_{L}$) existed it would be a gauge singlet

Dirac mass term

If ν_{R} (or $\bar{\nu}_{L}$) existed it would be a gauge singlet Charged leptons get their mass:

$$
\mathcal{L} \supset y_{e} \bar{\ell}_{L} \phi e_{R}
$$

Dirac mass term

If ν_{R} (or $\bar{\nu}_{L}$) existed it would be a gauge singlet Charged leptons get their mass:

$$
\mathcal{L} \supset y_{e} \bar{\ell}_{L} \phi e_{R}
$$

Neutrino oscillations likely indicate that $\nu_{R}\left(\right.$ and $\left.\bar{\nu}_{L}\right)$ exist:

$$
\mathcal{L} \supset y_{\nu_{e}} \bar{\ell}_{L} \phi \nu_{e, R}
$$

Dirac mass term

If ν_{R} (or $\bar{\nu}_{L}$) existed it would be a gauge singlet
Charged leptons get their mass:

$$
\mathcal{L} \supset y_{e} \bar{\ell}_{L} \phi e_{R}
$$

Neutrino oscillations likely indicate that $\nu_{R}\left(\right.$ and $\left.\bar{\nu}_{L}\right)$ exist:

$$
\mathcal{L} \supset y_{\nu_{e}} \bar{\ell}_{L} \phi \nu_{e, R}
$$

Perfectly valid way to acquire mass, but ...

Neutrino Yukawa couplings $\lesssim 10^{-12}$
But electron Yukawa coupling $\sim 10^{-6}$

Majorana mass term

Not disallowed for neutrinos, so maybe it's there

$$
\mathcal{L} \supset m \overline{\nu_{L}} \nu_{L}^{c}
$$

Consequences:

Majorana mass term

Not disallowed for neutrinos, so maybe it's there

$$
\mathcal{L} \supset m \overline{\nu_{L}} \nu_{L}^{c}
$$

Consequences:

1. Connects a ν_{L} with a $(\bar{\nu})_{R}$

Majorana mass term

Not disallowed for neutrinos, so maybe it's there

$$
\mathcal{L} \supset m \overline{\nu_{L}} \nu_{L}^{c}
$$

Consequences:

1. Connects a ν_{L} with a $(\bar{\nu})_{R}$
2. Violates L number by two units

Leads to the neutrinoless double beta decay process

Majorana mass term

Not disallowed for neutrinos, so maybe it's there

$$
\mathcal{L} \supset m \overline{\nu_{L}} \nu_{L}^{c}
$$

Consequences:

1. Connects a ν_{L} with a $(\bar{\nu})_{R}$
2. Violates L number by two units

Leads to the neutrinoless double beta decay process
3. Thus $\nu \rightarrow \bar{\nu}$ mixing is possible

This is why charged leptons and quarks can't have Majorana mass terms

Majorana mass term

Not disallowed for neutrinos, so maybe it's there

$$
\mathcal{L} \supset m \overline{\nu_{L}} \nu_{L}^{c}
$$

Consequences:

1. Connects a ν_{L} with a $(\bar{\nu})_{R}$
2. Violates L number by two units

Leads to the neutrinoless double beta decay process
3. Thus $\nu \rightarrow \bar{\nu}$ mixing is possible

This is why charged leptons and quarks can't have Majorana mass terms
4. Only two total states: ν_{L} and $(\bar{\nu})_{R}$

If no Majorana term then probably four states: $\nu_{L}, \nu_{R},(\bar{\nu})_{R}$, and $(\bar{\nu})_{L}$

Majorana mass term

Not disallowed for neutrinos, so maybe it's there

$$
\mathcal{L} \supset m \overline{\nu_{L}} \nu_{L}^{c}
$$

Consequences:

1. Connects a ν_{L} with a $(\bar{\nu})_{R}$
2. Violates L number by two units

Leads to the neutrinoless double beta decay process
3. Thus $\nu \rightarrow \bar{\nu}$ mixing is possible

This is why charged leptons and quarks can't have Majorana mass terms
4. Only two total states: ν_{L} and $(\bar{\nu})_{R}$

If no Majorana term then probably four states: $\nu_{L}, \nu_{R},(\bar{\nu})_{R}$, and $(\bar{\nu})_{L}$
5. Difference is only relevant phenomenologically for $p_{\nu} \sim m_{\nu}$

Cosmic neutrino background
Internal leg in neutrinoless double beta decay diagram

Seesaw

Majorana mass term does not forbid Dirac mass term Many different seesaw realizations

Ingredients:

Seesaw

Majorana mass term does not forbid Dirac mass term Many different seesaw realizations

Ingredients:

1. 3 left handed neutrinos ν in a $\mathrm{SU}(2)$ doublet

Seesaw

Majorana mass term does not forbid Dirac mass term Many different seesaw realizations

Ingredients:

1. 3 left handed neutrinos ν in a $\mathrm{SU}(2)$ doublet
2. 3 right handed neutrinos N with Majorana mass term

Seesaw

Majorana mass term does not forbid Dirac mass term Many different seesaw realizations

Ingredients:

1. 3 left handed neutrinos ν in a $\mathrm{SU}(2)$ doublet
2. 3 right handed neutrinos N with Majorana mass term
3. Write down a Dirac mass term from the Higgs for ν and N

Seesaw

Majorana mass term does not forbid Dirac mass term Many different seesaw realizations

Ingredients:

1. 3 left handed neutrinos ν in a $\mathrm{SU}(2)$ doublet
2. 3 right handed neutrinos N with Majorana mass term
3. Write down a Dirac mass term from the Higgs for ν and N
4. After electroweak symmetry breaking

$$
\mathcal{L} \supset-m_{D} \overline{\nu_{L}} N_{R}-\frac{1}{2} M_{R} \overline{\left(N^{c}\right)}{ }_{L} N_{R}
$$

Seesaw

Majorana mass term does not forbid Dirac mass term Many different seesaw realizations

Ingredients:

1. 3 left handed neutrinos ν in a $\mathrm{SU}(2)$ doublet
2. 3 right handed neutrinos N with Majorana mass term
3. Write down a Dirac mass term from the Higgs for ν and N
4. After electroweak symmetry breaking

$$
\mathcal{L} \supset-m_{D} \overline{\nu_{L}} N_{R}-\frac{1}{2} M_{R}{\overline{\left(N^{c}\right)}}_{L} N_{R}
$$

5. Diagonalize the mass matrix between bare and mass bases

$$
\mathbb{N}^{\dagger}\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right) \mathbb{N}^{*}=\left(\begin{array}{cc}
m_{\nu} & 0 \\
0 & M_{N}
\end{array}\right), \quad\binom{\nu}{N^{c}}_{L}=\mathbb{N}\binom{\nu_{m}}{N_{m}^{c}}
$$

Seesaw

Majorana mass term does not forbid Dirac mass term Many different seesaw realizations

Ingredients:

1. 3 left handed neutrinos ν in a $\mathrm{SU}(2)$ doublet
2. 3 right handed neutrinos N with Majorana mass term
3. Write down a Dirac mass term from the Higgs for ν and N
4. After electroweak symmetry breaking

$$
\mathcal{L} \supset-m_{D} \overline{\nu_{L}} N_{R}-\frac{1}{2} M_{R} \overline{\left(N^{c}\right)}{ }_{L} N_{R}
$$

5. Diagonalize the mass matrix between bare and mass bases

$$
\mathbb{N}^{\dagger}\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right) \mathbb{N}^{*}=\left(\begin{array}{cc}
m_{\nu} & 0 \\
0 & M_{N}
\end{array}\right), \quad\binom{\nu}{N^{c}}_{L}=\mathbb{N}\binom{\nu_{m}}{N_{m}^{c}}
$$

6. Physical mass terms for $M_{R} \gg m_{D}$:

$$
m_{\nu} \approx-\frac{m_{D}^{2}}{M_{R}}, \quad M_{N} \approx M_{R}
$$

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

- Solar ν_{e} disappearance $\rightarrow \pm \cos 2 \theta_{12}, \pm \Delta m_{21}^{2}$

SNO, Borexino, SuperK

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

- Solar ν_{e} disappearance $\rightarrow \pm \cos 2 \theta_{12}, \pm \Delta m_{21}^{2}$

SNO, Borexino, SuperK

- Reactor ν_{e} disappearance:

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

- Solar ν_{e} disappearance $\rightarrow \pm \cos 2 \theta_{12}, \pm \Delta m_{21}^{2}$

SNO, Borexino, SuperK

- Reactor ν_{e} disappearance:
- LBL $\rightarrow \sin 2 \theta_{12}$ and $\left|\Delta m_{21}^{2}\right|$

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

- Solar ν_{e} disappearance $\rightarrow \pm \cos 2 \theta_{12}, \pm \Delta m_{21}^{2}$

SNO, Borexino, SuperK

- Reactor ν_{e} disappearance:
- LBL $\rightarrow \sin 2 \theta_{12}$ and $\left|\Delta m_{21}^{2}\right|$

KamLAND

- Future LBL $\rightarrow \pm \Delta m_{31}^{2}$

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

- Solar ν_{e} disappearance $\rightarrow \pm \cos 2 \theta_{12}, \pm \Delta m_{21}^{2}$

SNO, Borexino, SuperK

- Reactor ν_{e} disappearance:
- LBL $\rightarrow \sin 2 \theta_{12}$ and $\left|\Delta m_{21}^{2}\right|$

KamLAND

- Future LBL $\rightarrow \pm \Delta m_{31}^{2}$
JUNO
- MBL $\rightarrow \theta_{13},\left|\Delta m_{31}^{2}\right|$

Daya Bay, RENO, Double Chooz

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

- Solar ν_{e} disappearance $\rightarrow \pm \cos 2 \theta_{12}, \pm \Delta m_{21}^{2}$

SNO, Borexino, SuperK

- Reactor ν_{e} disappearance:
- LBL $\rightarrow \sin 2 \theta_{12}$ and $\left|\Delta m_{21}^{2}\right|$

KamLAND

- Future $\mathrm{LBL} \rightarrow \pm \Delta m_{31}^{2}$

JUNO
$-\mathrm{MBL} \rightarrow \theta_{13},\left|\Delta m_{31}^{2}\right|$
Daya Bay, RENO, Double Chooz

- Accelerator LBL ν_{e} appearance: $\pm \Delta m_{31}^{2}, \pm \cos 2 \theta_{23}, \theta_{13}, \delta$ T2K, NOvA, T2HK, DUNE

Experiment to Oscillation Parameters

Six oscillation parameters: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^{2}, \Delta m_{31}^{2}$

- Atmospheric ν_{μ} disappearance $\rightarrow \sin 2 \theta_{23},\left|\Delta m_{31}^{2}\right|$

SuperK, IMB, IceCube

- Solar ν_{e} disappearance $\rightarrow \pm \cos 2 \theta_{12}, \pm \Delta m_{21}^{2}$

SNO, Borexino, SuperK

- Reactor ν_{e} disappearance:
- LBL $\rightarrow \sin 2 \theta_{12}$ and $\left|\Delta m_{21}^{2}\right|$

KamLAND

- Future $\mathrm{LBL} \rightarrow \pm \Delta m_{31}^{2}$
JUNO
$-\mathrm{MBL} \rightarrow \theta_{13},\left|\Delta m_{31}^{2}\right|$
Daya Bay, RENO, Double Chooz
- Accelerator LBL ν_{e} appearance: $\pm \Delta m_{31}^{2}, \pm \cos 2 \theta_{23}, \theta_{13}, \delta$ T2K, NOvA, T2HK, DUNE
7th parameter: absolute mass scale

Solar parameters: SK, SNO, KamLAND

Reactor parameters

Remaining oscillation unknowns

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

- Differentiate Δm_{31}^{2} and Δm_{32}^{2}
3% difference
JUNO's strategy

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

- Differentiate Δm_{31}^{2} and Δm_{32}^{2}
3% difference
JUNO's strategy
- Slight $(\sim 3 \sigma)$ preference for normal ordering $\left(\Delta m_{31}^{2}>0\right)$

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

- Differentiate Δm_{31}^{2} and Δm_{32}^{2}
3% difference JUNO's strategy
- Slight $(\sim 3 \sigma)$ preference for normal ordering $\left(\Delta m_{31}^{2}>0\right)$
- Terminology: there are two orderings and three hierarchies

Quasi-degenerate is $m_{1} \sim m_{2} \sim m_{3}$

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

- Differentiate Δm_{31}^{2} and Δm_{32}^{2}
3% difference JUNO's strategy
- Slight $(\sim 3 \sigma)$ preference for normal ordering $\left(\Delta m_{31}^{2}>0\right)$
- Terminology: there are two orderings and three hierarchies Quasi-degenerate is $m_{1} \sim m_{2} \sim m_{3}$

2. $\boldsymbol{\theta}_{\mathbf{2 3}}$ octant: whether ν_{3} is more (upper) or less (lower) ν_{μ}

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

- Differentiate Δm_{31}^{2} and Δm_{32}^{2}
3% difference JUNO's strategy
- Slight $(\sim 3 \sigma)$ preference for normal ordering $\left(\Delta m_{31}^{2}>0\right)$
- Terminology: there are two orderings and three hierarchies Quasi-degenerate is $m_{1} \sim m_{2} \sim m_{3}$

2. $\boldsymbol{\theta}_{23}$ octant: whether ν_{3} is more (upper) or less (lower) ν_{μ}

- Long-baseline appearance is good for this

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

- Differentiate Δm_{31}^{2} and Δm_{32}^{2}
3% difference JUNO's strategy
- Slight $(\sim 3 \sigma)$ preference for normal ordering $\left(\Delta m_{31}^{2}>0\right)$
- Terminology: there are two orderings and three hierarchies Quasi-degenerate is $m_{1} \sim m_{2} \sim m_{3}$

2. $\boldsymbol{\theta}_{\mathbf{2 3}}$ octant: whether ν_{3} is more (upper) or less (lower) ν_{μ}

- Long-baseline appearance is good for this

3. Complex phase $\boldsymbol{\delta}$: governs if/how much CP is violated Relationship between δ and CP violation: PBD, R. Pestes 2006.09384

Remaining oscillation unknowns

1. Atmospheric mass ordering: the sign of $\Delta m_{31}^{2} \& \Delta m_{32}^{2}$

- Matter effect

DUNE's strategy

- Differentiate Δm_{31}^{2} and Δm_{32}^{2}
3% difference JUNO's strategy
- Slight $(\sim 3 \sigma)$ preference for normal ordering $\left(\Delta m_{31}^{2}>0\right)$
- Terminology: there are two orderings and three hierarchies Quasi-degenerate is $m_{1} \sim m_{2} \sim m_{3}$

2. $\boldsymbol{\theta}_{\mathbf{2 3}}$ octant: whether ν_{3} is more (upper) or less (lower) ν_{μ}

- Long-baseline appearance is good for this

3. Complex phase $\boldsymbol{\delta}$: governs if/how much CP is violated Relationship between δ and CP violation: PBD, R. Pestes 2006.09384

- Long-baseline appearance is good for this

Mass states in two orderings

$\square$$\nu_{\pi}$

Normal Ordering

Mass states in two orderings

ν_{μ}
ν_{t}
ν_{3}

Normal Ordering
Inverted Ordering

LSND sees $\mathrm{a} \sim 1 \mathrm{eV}$ sterile?

LSND at Los Alamos:

1. $\bar{\nu}_{\mu}$ from μ^{+}decay-at-rest
2. Saw an excess of $\bar{\nu}_{e}$ events: $87.9 \pm 22.4 \pm 6.0$

LSND hep-ex/0104049

LSND sees $\mathrm{a} \sim 1 \mathrm{eV}$ sterile?

LSND at Los Alamos:

1. $\bar{\nu}_{\mu}$ from μ^{+}decay-at-rest
2. Saw an excess of $\bar{\nu}_{e}$ events: $87.9 \pm 22.4 \pm 6.0$

LSND hep-ex/0104049

Could be a cut problem:
J. Hill hep-ex/9504009

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

1. Higher energy and higher baseline: at the same L / E

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

1. Higher energy and higher baseline: at the same L / E
2. Different production physics

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

1. Higher energy and higher baseline: at the same L / E
2. Different production physics
3. Different cross section

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

1. Higher energy and higher baseline: at the same L / E
2. Different production physics
3. Different cross section
4. Different backgrounds

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

1. Higher energy and higher baseline: at the same L / E
2. Different production physics
3. Different cross section
4. Different backgrounds
5. Different response to non-oscillation new physics

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

1. Higher energy and higher baseline: at the same L / E
2. Different production physics
3. Different cross section
4. Different backgrounds
5. Different response to non-oscillation new physics
6. Has an excess in both neutrino and anti-neutrino modes

MiniBooNE also sees a $\sim 1 \mathrm{eV}$ sterile?

Built at Fermilab to test LSND

1. Higher energy and higher baseline: at the same L / E
2. Different production physics
3. Different cross section
4. Different backgrounds
5. Different response to non-oscillation new physics
6. Has an excess in both neutrino and anti-neutrino modes
7. Excess is generally consistent with LSND under the oscillation hypothesis

Latest MiniBooNE results

MiniBooNE 1805.12028

FIG. 1: The MiniBooNE neutrino mode $E_{\nu}^{Q E}$ distributions, corresponding to the total 12.84×10^{20} POT data, for ν_{e} CCQE data (points with statistical errors) and background (histogram with systematic errors). The dashed curve shows the best fit to the neutrino-mode data assuming two-neutrino oscillations. The last bin is for the energy interval from 15003000 MeV .

FIG. 3: MiniBooNE allowed regions in neutrino mode (12.84× $10^{20} \mathrm{POT}$) for events with $200<E_{\nu}^{Q E}<3000 \mathrm{MeV}$ within a two-neutrino oscillation model. The shaded areas show the 90% and 99% C.L. LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ allowed regions. The black point shows the MiniBooNE best fit point. Also shown are 90% C.L. limits from the KARMEN [37] and OPERA [38] experiments.

Gallium anomaly

Gallium anomaly

1. GALLEX and SAGE were low energy solar experiments

GALLEX PLB 342 (1995) 440
SAGE PRL 77 (1996) 4708

Gallium anomaly

1. GALLEX and SAGE were low energy solar experiments

GALLEX PLB 342 (1995) 440
SAGE PRL 77 (1996) 4708
2. Callibrated detectors with intense beta decay sources

Gallium anomaly

1. GALLEX and SAGE were low energy solar experiments

GALLEX PLB 342 (1995) 440
SAGE PRL 77 (1996) 4708
2. Callibrated detectors with intense beta decay sources
3. 3σ deficit consistent with fast oscillations

C. Giunti, M. Laveder 1006. 3244

Gallium anomaly

1. GALLEX and SAGE were low energy solar experiments

GALLEX PLB 342 (1995) 440 SAGE PRL 77 (1996) 4708
2. Callibrated detectors with intense beta decay sources
3. 3σ deficit consistent with fast oscillations

C. Giunti, M. Laveder 1006.3244
4. Using improved nuclear shell models: $3.0 \sigma \rightarrow 2.3 \sigma$
J. Kostensalo, et al. 1906. 10980

Reactor anti-neutrino anomaly

Reactor anti-neutrino anomaly

- Near detectors $\mathcal{O}(100) \mathrm{m}$ from cores, expect no oscillations

Reactor anti-neutrino anomaly

- Near detectors $\mathcal{O}(100) \mathrm{m}$ from cores, expect no oscillations
- New large frequency fast oscillations \Rightarrow overall flux deficit

Large frequency \Rightarrow large Δm_{41}^{2}

Reactor anti-neutrino anomaly

- Near detectors $\mathcal{O}(100) \mathrm{m}$ from cores, expect no oscillations
- New large frequency fast oscillations \Rightarrow overall flux deficit

Large frequency \Rightarrow large Δm_{41}^{2}

- Have to compare to theory prediction

Reactor anti-neutrino anomaly

- Near detectors $\mathcal{O}(100) \mathrm{m}$ from cores, expect no oscillations
- New large frequency fast oscillations \Rightarrow overall flux deficit

Large frequency \Rightarrow large Δm_{41}^{2}

- Have to compare to theory prediction

- Deficit compared to theory
$\Rightarrow \Delta m_{41}^{2} \gtrsim 1.5 \mathrm{eV}^{2} \sin ^{2} 2 \theta_{14} \sim 0.14$
G. Mention, et al. 1101. 2755

Reactor anti-neutrino anomaly: fuel evolution

Reactor anti-neutrino anomaly: fuel evolution

- Reactor flux calculations involve thousands of isotopes

Many never directly observed

Reactor anti-neutrino anomaly: fuel evolution

- Reactor flux calculations involve thousands of isotopes

Many never directly observed

- The amount of isotopes in reactors varies in time

Reactor anti-neutrino anomaly: fuel evolution

- Reactor flux calculations involve thousands of isotopes

Many never directly observed

- The amount of isotopes in reactors varies in time
- If the deficit was due to neutrino physics it would be independent of the flux

Reactor anti-neutrino anomaly: fuel evolution

- Reactor flux calculations involve thousands of isotopes

Many never directly observed

- The amount of isotopes in reactors varies in time
- If the deficit was due to neutrino physics it would be independent of the flux
- Data indicates the deficit does evolve with flux

Daya Bay 1704.01082

Light sterile global picture

Light sterile global picture

- Appears that there is $\nu_{\mu} \rightarrow \nu_{e}$ with $\Delta m_{41}^{2} \sim 1 \mathrm{eV}^{2}$

LSND, MiniBooNE

Light sterile global picture

- Appears that there is $\nu_{\mu} \rightarrow \nu_{e}$ with $\Delta m_{41}^{2} \sim 1 \mathrm{eV}^{2}$ LSND, MiniBooNE
- Could be $\nu_{e} \rightarrow \nu_{e}$ at comparable Δm_{41}^{2}

Gallium, reactor anti-neutrino anomaly

Light sterile global picture

- Appears that there is $\nu_{\mu} \rightarrow \nu_{e}$ with $\Delta m_{41}^{2} \sim 1 \mathrm{eV}^{2}$ LSND, MiniBooNE
- Could be $\nu_{e} \rightarrow \nu_{e}$ at comparable Δm_{41}^{2}

Gallium, reactor anti-neutrino anomaly

- Appearance also needs $\nu_{\mu} \rightarrow \nu_{\mu}$

Light sterile global picture

- Appears that there is $\nu_{\mu} \rightarrow \nu_{e}$ with $\Delta m_{41}^{2} \sim 1 \mathrm{eV}^{2}$

LSND, MiniBooNE

- Could be $\nu_{e} \rightarrow \nu_{e}$ at comparable Δm_{41}^{2}

Gallium, reactor anti-neutrino anomaly

- Appearance also needs $\nu_{\mu} \rightarrow \nu_{\mu}$
- Strong constraints: IceCube (atm) and MINOS+ (LBL acc)

M. Dentler, et al. 1803.10661

Light sterile global picture

- Appears that there is $\nu_{\mu} \rightarrow \nu_{e}$ with $\Delta m_{41}^{2} \sim 1 \mathrm{eV}^{2}$

LSND, MiniBooNE

- Could be $\nu_{e} \rightarrow \nu_{e}$ at comparable Δm_{41}^{2}

Gallium, reactor anti-neutrino anomaly

- Appearance also needs $\nu_{\mu} \rightarrow \nu_{\mu}$
- Strong constraints: IceCube (atm) and MINOS+ (LBL acc)

- Are also cosmological bounds

Other anomalies

- ANITA
- Balloon looking for UHE earth-skimming tau neutrinos
- Neutrinos are readily absorbed at these energies
- Detected several neutrinos at 30° below the horizon
- Remains unexplained

ANITA 1803.05088

Other anomalies

- ANITA
- Balloon looking for UHE earth-skimming tau neutrinos
- Neutrinos are readily absorbed at these energies
- Detected several neutrinos at 30° below the horizon
- Remains unexplained

ANITA 1803.05088

- X-ray 3.5 keV line
- An x-ray line has been seen in galaxies
E. Bulbul, et al. 1402.2301 \& A. Boyarsky, et al. 1402.4119
- Consistent with 7 keV sterile neutrino DM decaying
- Separate analysis of our galaxy finds nothing
C. Dessert, N. Rodd, B. Safdi 1812.06976

Other anomalies

- ANITA
- Balloon looking for UHE earth-skimming tau neutrinos
- Neutrinos are readily absorbed at these energies
- Detected several neutrinos at 30° below the horizon
- Remains unexplained

ANITA 1803.05088

- X-ray 3.5 keV line
- An x-ray line has been seen in galaxies
E. Bulbul, et al. 1402.2301 \& A. Boyarsky, et al. 1402.4119
- Consistent with 7 keV sterile neutrino DM decaying
- Separate analysis of our galaxy finds nothing
C. Dessert, N. Rodd, B. Safdi 1812.06976
\rightarrow Track and cascade spectra at IceCube
- IceCube measures tracks $\left(\nu_{\mu}\right)$ and cascades $\left(\nu_{e}, \nu_{\tau}\right)$
- At $>3 \sigma$ neutrino decay is preferred

PBD, I. Tamborra 1805.05950

Other anomalies

- ANITA
- Balloon looking for UHE earth-skimming tau neutrinos
- Neutrinos are readily absorbed at these energies
- Detected several neutrinos at 30° below the horizon
- Remains unexplained

ANITA 1803.05088

- X-ray 3.5 keV line
- An x-ray line has been seen in galaxies
E. Bulbul, et al. 1402.2301 \& A. Boyarsky, et al. 1402.4119
- Consistent with 7 keV sterile neutrino DM decaying
- Separate analysis of our galaxy finds nothing C. Dessert, N. Rodd, B. Safdi 1812.06976
- Track and cascade spectra at IceCube
- IceCube measures tracks $\left(\nu_{\mu}\right)$ and cascades $\left(\nu_{e}, \nu_{\tau}\right)$
- At $>3 \sigma$ neutrino decay is preferred
- NOvA and T2K slightly disagree PBD, I. Tamborra 1805.05950
- Flavor changing CP violating non-standard interactions
- Model preference is slight $\sim 2 \sigma$
- Testable at IceCube and COHERENT

PBD, J. Gehrlein, R. Pestes 2008.01110

Sterile neutrino

Sterile neutrinos may well exist, but at $\sim 1 \mathrm{eV}$?

Sterile neutrino

Sterile neutrinos may well exist, but at $\sim 1 \mathrm{eV}$?

1. Any new neutrino $m_{\nu} \lesssim M_{Z} / 2$ must be right handed

Sterile neutrino

Sterile neutrinos may well exist, but at $\sim 1 \mathrm{eV}$?

1. Any new neutrino $m_{\nu} \lesssim M_{Z} / 2$ must be right handed
2. A fourth neutrino could affect oscillations directly

Sterile neutrino

Sterile neutrinos may well exist, but at $\sim 1 \mathrm{eV}$?

1. Any new neutrino $m_{\nu} \lesssim M_{Z} / 2$ must be right handed
2. A fourth neutrino could affect oscillations directly
3. Add one more Δm_{41}^{2}

Known to not be near Δm_{21}^{2} or Δm_{31}^{2}

Sterile neutrino

Sterile neutrinos may well exist, but at $\sim 1 \mathrm{eV}$?

1. Any new neutrino $m_{\nu} \lesssim M_{Z} / 2$ must be right handed
2. A fourth neutrino could affect oscillations directly
3. Add one more Δm_{41}^{2}

Known to not be near Δm_{21}^{2} or Δm_{31}^{2}
4. Add three new angles and two new complex phases

Sterile neutrino

Sterile neutrinos may well exist, but at $\sim 1 \mathrm{eV}$?

1. Any new neutrino $m_{\nu} \lesssim M_{Z} / 2$ must be right handed
2. A fourth neutrino could affect oscillations directly
3. Add one more Δm_{41}^{2}

Known to not be near Δm_{21}^{2} or Δm_{31}^{2}
4. Add three new angles and two new complex phases
5. In most oscillation cases $3+1$ is sufficient

Sterile neutrino

Sterile neutrinos may well exist, but at $\sim 1 \mathrm{eV}$?

1. Any new neutrino $m_{\nu} \lesssim M_{Z} / 2$ must be right handed
2. A fourth neutrino could affect oscillations directly
3. Add one more Δm_{41}^{2}

Known to not be near Δm_{21}^{2} or Δm_{31}^{2}
4. Add three new angles and two new complex phases
5. In most oscillation cases $3+1$ is sufficient
6. Note that the NC term in the matter effect matters now
Steriles: 1 eV

For:

1. LSND
2. MiniBooNE
3. Gallium
4. Reactor anti-neutrino

Against:

1. MINOS+: long-baseline accelerator with both near and far detectors
2. IceCube atmospherics:
via the matter effect

Steriles: 1 eV

For:

1. LSND
2. MiniBooNE
3. Gallium
4. Reactor anti-neutrino

Against:

1. MINOS+: long-baseline accelerator with both near and far detectors
2. IceCube atmospherics:
via the matter effect

Evidence for requires theory predictions or measuring energy Evidence against leverages near/far detectors or angles

Steriles: 1 eV

For:

1. LSND
2. MiniBooNE
3. Gallium
4. Reactor anti-neutrino

Against:

1. MINOS+: long-baseline accelerator with both near and far detectors
2. IceCube atmospherics: via the matter effect

Evidence for requires theory predictions or measuring energy Evidence against leverages near/far detectors or angles

Ongoing/upcoming probes:

1. MicroBooNE \rightarrow Short baseline neutrino program (three detectors)
2. Short baseline reactor experiments: see wiggles directly! NEOS, DANSS, PROSPECT

Steriles: keV

- keV sterile neutrinos can be DM
- Would be a bit high in temperature
- A possible hint of their existence at 7 keV
- Would also affect SNe

A. Suliga, I. Tamborra, M. Wu 2004.11389

Steriles: GeV+

If they are heavy they won't affect oscillations, just kinematics

c)

Figure 7. HNL production channels: a) Drell-Yan-type process; b) gluon fusion; c) quarkgluon fusion.
K. Bondarenko, et al. 1805.08567

- Look in colliders, beam dumps
- Battle between energy and intensity

Sterile Neutrinos: Where are they Hiding?

F. Deppisch CERN Neutrino Platform '19

Non-standard neutrino interactions

What if there was a new matter-effect like interaction?
L. Wolfenstein PRD 17 (1978)

Recent overview: PBD, et al. 1907.00991

- Can affect propagation, production, detection
- Scales like the matter potential
- Can have own non-trivial flavor \& CP violating structure
- Testable in scattering experiments, early universe, and SNe
- Leads to a degeneracy: mass ordering can't be determined

Matter Effects in Feynman Diagrams

$V_{\mathrm{NC}}=\mp \frac{1}{2} \sqrt{2} G_{F} n_{n}$

$$
V_{\mathrm{CC}}= \pm \sqrt{2} G_{F} n_{e}
$$

Matter Effects in Feynman Diagrams

$V_{\mathrm{NC}}=\mp \frac{1}{2} \sqrt{2} G_{F} n_{n}$

$V_{\mathrm{CC}}= \pm \sqrt{2} G_{F} n_{e}$

NSI at the Hamiltonian Level

$$
\begin{aligned}
H^{\mathrm{vac}} & =\frac{1}{2 E} U\left(\begin{array}{lll}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger} \\
& H^{\mathrm{mat}, \mathrm{SM}}=\frac{a}{2 E}\left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0
\end{array}\right)
\end{aligned}
$$

NSI at the Hamiltonian Level

$$
\begin{aligned}
& H^{\mathrm{vac}}=\frac{1}{2 E} U\left(\begin{array}{lll}
0 & & \\
& \Delta m_{21}^{2} & \\
\\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger} \\
& H^{\mathrm{mat}, \mathrm{SM}}=\frac{a}{2 E}\left(\begin{array}{ccc}
1 & & \\
& 0 & \\
& & 0
\end{array}\right) \\
& H^{\mathrm{mat}, \mathrm{NSI}}=\frac{a}{2 E}\left(\begin{array}{ccc}
\epsilon_{e e} & \epsilon_{e \mu} & \epsilon_{e \tau} \\
\epsilon_{e \mu}^{*} & \epsilon_{\mu \mu} & \epsilon_{\mu \tau} \\
\epsilon_{e \tau}^{*} & \epsilon_{\mu \tau}^{*} & \epsilon_{\tau \tau}
\end{array}\right)
\end{aligned}
$$

$$
H=H^{\mathrm{vac}}+H^{\mathrm{mat}, \mathrm{SM}}+H^{\mathrm{mat}, \mathrm{NSI}}
$$

NSI at the Lagrangian Level

EFT Lagrangian:

$$
\mathscr{L}_{\mathrm{NSI}}=-2 \sqrt{2} G_{F} \sum_{f, P, \alpha, \beta} \epsilon_{\alpha, \beta}^{f, P}\left(\bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\beta}\right)\left(\bar{f} \gamma_{\mu} P f\right)
$$

$$
\text { with } \Lambda=\frac{1}{\sqrt{2 \sqrt{2} \epsilon G_{F}}} .
$$

NSI at the Lagrangian Level

EFT Lagrangian:

$$
\mathscr{L}_{\mathrm{NSI}}=-2 \sqrt{2} G_{F} \sum_{f, P, \alpha, \beta} \epsilon_{\alpha, \beta}^{f, P}\left(\bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\beta}\right)\left(\bar{f} \gamma_{\mu} P f\right)
$$

$$
\text { with } \Lambda=\frac{1}{\sqrt{2 \sqrt{2} \epsilon G_{F}}} .
$$

Simplified model Lagrangian:

$$
\mathscr{L}_{\mathrm{NSI}}=g_{\nu} Z_{\mu}^{\prime} \bar{\nu} \gamma^{\mu} \nu+g_{f} Z_{\mu}^{\prime} \bar{f} \gamma^{\mu} f
$$

which gives a potential

$$
V_{\mathrm{NSI}} \propto \frac{g_{\nu} g_{f}}{q^{2}+m_{Z^{\prime}}^{2}}
$$

NSI at the Lagrangian Level

EFT Lagrangian:

$$
\mathscr{L}_{\mathrm{NSI}}=-2 \sqrt{2} G_{F} \sum_{f, P, \alpha, \beta} \epsilon_{\alpha, \beta}^{f, P}\left(\bar{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\beta}\right)\left(\bar{f} \gamma_{\mu} P f\right)
$$

$$
\text { with } \Lambda=\frac{1}{\sqrt{2 \sqrt{2} \epsilon G_{F}}}
$$

Simplified model Lagrangian:

$$
\mathscr{L}_{\mathrm{NSI}}=g_{\nu} Z_{\mu}^{\prime} \bar{\nu} \gamma^{\mu} \nu+g_{f} Z_{\mu}^{\prime} \bar{f} \gamma^{\mu} f
$$

which gives a potential

$$
V_{\mathrm{NSI}} \propto \frac{g_{\nu} g_{f}}{q^{2}+m_{Z^{\prime}}^{2}}
$$

Models with large NSIs consistent with CLFV:
Y. Farzan, I. Shoemaker 1512.09147 Y. Farzan, J. Heeck 1607.07616
D. Forero and W. Huang 1608.04719 U. Dey, N. Nath, S. Sadhukhan 1804.05808
K. Babu, A. Friedland, P. Machado, I. Mocioiu 1705.01822 Y. Farzan 1912.09408

PBD, Y. Farzan, I. Shoemaker 1804.03660

Neutrino Decay

Since neutrinos have different masses, they decay

- Loop suppressed
- Long lifetime: $\tau \gtrsim 10^{35}$ years

Test this!

Typical Lagrangian for $\nu_{i} \rightarrow \nu_{j}+\phi$ with $m_{i}>m_{j}$

$$
\mathcal{L} \supset \frac{g_{i j}}{2} \bar{\nu}_{j} \nu_{i} \phi+\frac{g_{i j}^{\prime}}{2} \bar{\nu}_{j} i \gamma_{5} \nu_{i} \phi
$$

Neutrino Decay Phenomenology

Neutrino decay is phenomenologically classified into:

- Invisible decay:
- The decay products are sterile or too low energy to be detected
- Results in a depletion of the flux below the relevant energy
- Visible decay:
- Decay products are detected
- In addition to depletion, there is regeneration
- Regeneration happens at a lower energy than depletion

Invisible ν Decay Constraints and Evidence
 $\mathrm{Atm}+\mathrm{LBL}\left(\nu_{3}\right)$
 Solar $\left(\nu_{2}\right)$
 IceCube $\left(\nu_{i}\right)$
 Tracks \& Cascades
 SN1987A $\left(\bar{\nu}_{e}\right)$

 $\tau / m[\mathrm{~s} / \mathrm{eV}]$
 M. Gonzalez-Garcia and M. Maltoni 0802.3699
 J. Berryman, A. de Gouvea, D. Hernandez 1411.0308
 G. Pagliaroli, et al. 1506. 02624
 PBD, I. Tamborra 1805.05950
 Kamiokande-II, PRL 581490 (1987)
 S. Ando hep-ph/0307169
 S. Hannestad, G. Raffelt hep-ph/0509278
 A. Long, C. Lunardini, E. Sabancila 1405.7654

Other new physics searches

1. Unitary violation
2. Decoherence
3. Lorentz invariance violation and CPT violation
4. Dark matter interactions
5. Neutrino magnetic moment
6. Combination of new physics scenarios
7. \vdots

Next generation oscillation experiments

JUNO: KamLAND 2.0, coming online in ~ 1 year

1. Improved measurement of solar parameters $\theta_{12}, \Delta m_{21}^{2}$
2. Measurements of MBL reactor parameters $\theta_{13}, \Delta m_{31}^{2}$
3. Mass ordering measurement by Δm_{31}^{2} vs. Δm_{32}^{2} discrimination

JUNO 1508.07166

Next generation oscillation experiments

- Accelerator
- Short baseline neutrino program at Fermilab

MicroBooNE: taking data since 2015
Short baseline neutrino detector (SBND): near detector, coming online nowish ICARUS: far detector, coming online nowish

P. Machado, O. Palamara, D. Schmitz 1903.04608

Next generation oscillation experiments

- Accelerator
- Short baseline neutrino program at Fermilab

MicroBooNE: taking data since 2015 Short baseline neutrino detector (SBND): near detector, coming online nowish ICARUS: far detector, coming online nowish

P. Machado, O. Palamara, D. Schmitz 1903.04608

- DUNE from Fermilab to SURF in South Dakota: 6+ years out

1300 km : longest long-baseline accelerator experiment Broadband beam peaked at $\sim 2.5 \mathrm{GeV}$: highest energy accelerator experiment

Next generation oscillation experiments

- Accelerator
- Short baseline neutrino program at Fermilab

MicroBooNE: taking data since 2015
Short baseline neutrino detector (SBND): near detector, coming online nowish ICARUS: far detector, coming online nowish

P. Machado, O. Palamara, D. Schmitz 1903.04608

- DUNE from Fermilab to SURF in South Dakota: 6+ years out

1300 km : longest long-baseline accelerator experiment
Broadband beam peaked at $\sim 2.5 \mathrm{GeV}$: highest energy accelerator experiment

- T2HK in Japan: Similar to T2K: $5+$ years out

Increasing protons on target (POT)
New far detector, HyperK

Next generation oscillation experiments

Hyper-KamiokaNDE: A new much larger SuperK-like detector under a different mountain

- Long-baseline program is called T2HK
- Will have additional solar neutrino physics

Less sensitive than SK due to less overburden and more backgrounds

- Atmospheric neutrinos
- Galactic supernova neutrinos
- Diffuse supernova neutrino background (DSNB)

Super-K was loaded with Gadolinium last year to reduce backgrounds to detect the DSNB

Next generation oscillation experiments

Possible future oscillation experiments

- T2HKK: Put one of the HK detectors in Korea
- ESSnuSB: Long baseline accelerator experiment in Sweden

The above two are targeting the second oscillation appearance maximum

- INO: Magnetized atmospheric experiment in India
- Neutrino factory: muon storage ring
-

Flavor models

Quark matrix (CKM) is perturbative Lepton matrix (PMNS) isn't

PMNS

Review: S. King 1510.02091

Flavor models

Quark matrix (CKM) is perturbative Lepton matrix (PMNS) isn't

PMNS

Review: S. King 1510.02091

Is there any structure?

Flavor models

Popular early models: Bimaximal, tri-bimaximal, \& golden ratio All predicted $U_{e 3}=0 \Rightarrow \theta_{13}=0$

Now know $\theta_{13}=8.5^{\circ}$

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Flavor models

Popular early models: Bimaximal, tri-bimaximal, \& golden ratio All predicted $U_{e 3}=0 \Rightarrow \theta_{13}=0$

Now know $\theta_{13}=8.5^{\circ}$

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Need more degrees of freedom: sum rules
Perhaps:

$$
U=\left(\begin{array}{ccc}
c_{\phi} & s_{\phi} e^{-i \psi} & 0 \\
-s_{\phi} e^{i \psi} & c_{\phi} & 0 \\
0 & 0 & 1
\end{array}\right) U_{T B M}
$$

which predicts:

$$
\cos \delta \approx \frac{\theta_{12}-\sin ^{-1} \frac{1}{\sqrt{3}}}{\theta_{13}}
$$

Flavor models

Related topics that were skipped

- Absolute mass scale measurements
- Cosmological/astrophysical measurements
- Neutrino-less double beta decay
- Tritium end point
- Supernova neutrinos
- Galactic and diffuse background
- Physics during propagation and inside SNe
- High energy astrophysical flux
- IceCube (10 years ago) and its upgrade (soon)
- KM3NeT/ARCA/ANTARES (construction ongoing)
- Baikal GVD (construction ongoing)
- ANITA (has performed several balloon flights)
- GRAND, POEMMA, P-ONE, ARA, ARIANNA, RNO, PUEO, BEACON, TAROGE (none are funded ... yet!)
- Many other oscillation BSM scenarios
- Decoherence
- Lorentz invariance or CPT violaion
- Dark matter interactions
- Unitary violation
- Leptogenesis
- Early universe measurements of neutrino properties
- Neutrino cross sections
- Coherent elastic ν nucleus scattering (CEvNS) at COHERENT, ...
- Geoneutrinos

Hamiltonian Dynamics

$$
H_{\text {flav }}=\frac{1}{2 E}\left[U\left(\begin{array}{ccc}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right] .
$$

Hamiltonian Dynamics

$$
\begin{gathered}
H_{\text {flav }}=\frac{1}{2 E}\left[U\left(\begin{array}{lll}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{lll}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right] \\
U=\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
-s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
& 1 & \\
-s_{13} e^{i \delta} & & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& \\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j} \\
\text { PBD, R. Pestes } 2006.09384
\end{array}\right.
\end{gathered}
$$

Hamiltonian Dynamics

$$
\begin{aligned}
H_{\text {flav }} & =\frac{1}{2 E}\left[U\left(\begin{array}{ccc}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right] \\
& a=2 \sqrt{2} G_{F} N_{e} E
\end{aligned}
$$

$$
\begin{array}{r}
U=\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
& -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
& 1 & \\
-s_{13} e^{i \delta} & & c_{13}
\end{array}\right) \\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}
\end{array}\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & 1
\end{array}\right)
$$

Find eigenvalues and eigenvectors:

$$
H_{\text {flav }}=\frac{1}{2 E} \widehat{U}\left(\begin{array}{lll}
0 & & \\
& \widehat{\Delta m^{2}} 21 & \\
& & \Delta \widehat{m}^{2} \\
& & \widehat{U}^{\dagger} .
\end{array}\right.
$$

J. Kopp physics/0610206

Computationally works, but we can do better than a black box... Analytic expression?

Analytic Oscillation Probabilities in Matter

\square Solar: $P_{e e} \simeq \sin ^{2} \theta_{\odot}$
Approx: S. Mikheev, A. Smirnov Nuovo Cim. C9 (1986) 17-26
Exact: S. Parke PRL 57 (1986) 2322
\square Long-baseline: All three flavors
Exact: H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) 273
Approx: PBD, H. Minakata, S. Parke, 1604.08167
Review: G. Barenboim, PBD, S. Parke, C. Ternes 1902.00517
$\square \nu_{e}$ disappearance (neutrino factory):
$\left.\Delta \widehat{m^{2}} e e=\widehat{m^{2}}{ }_{3}-\widehat{m^{2}}{ }_{1}+\widehat{m^{2}}{ }_{2}-\Delta m_{21}^{2} c_{12}^{2}\right)$
PBD, S. Parke, 1808.09453
\square Atmospheric

Get the eigenvalues

Eigenvalues Analytically: The Exact Solution

Solve the cubic characteristic equation: eigenvalues

$$
\begin{array}{r}
\left(\widehat{m^{2}}{ }_{i}\right)^{3}-A\left(\widehat{m^{2}}{ }_{i}\right)^{2}+B \widehat{m^{2}}{ }_{i}-C=0 \\
A \equiv \sum_{i} \widehat{m^{2}}{ }_{i}=\Delta m_{31}^{2}+\Delta m_{21}^{2}+a \\
B \equiv \sum_{i>j} \widehat{m^{2}}{ }_{i} \widehat{m^{2}}{ }_{j}=\Delta m_{31}^{2} \Delta m_{21}^{2}+a\left(\Delta m_{e e}^{2} c_{13}^{2}+\Delta m_{21}^{2}\right) \\
C \equiv \prod_{i} \widehat{m^{2}}{ }_{i}=a \Delta m_{31}^{2} \Delta m_{21}^{2} c_{13}^{2} c_{12}^{2} \\
\text { G. Cardano Ars Magna } 1545 \\
\text { V. Barger, et al. PRD } 22(1980) 2718 \\
\text { H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) } 273
\end{array}
$$

Eigenvalues Analytically: The Exact Solution

Solve the cubic characteristic equation: eigenvalues

$$
\begin{array}{r}
\left(\widehat{m^{2}}{ }_{i}\right)^{3}-A\left(\widehat{m^{2}}{ }_{i}\right)^{2}+B \widehat{m^{2}}{ }_{i}-C=0 \\
A \equiv \sum_{i} \widehat{m^{2}}{ }_{i}=\Delta m_{31}^{2}+\Delta m_{21}^{2}+a \\
B \equiv \sum_{i>j} \widehat{m^{2}}{ }_{i} \widehat{m^{2}}{ }_{j}=\Delta m_{31}^{2} \Delta m_{21}^{2}+a\left(\Delta m_{e e}^{2} c_{13}^{2}+\Delta m_{21}^{2}\right) \\
C \equiv \prod_{i} \widehat{m^{2}}{ }_{i}=a \Delta m_{31}^{2} \Delta m_{21}^{2} c_{13}^{2} c_{12}^{2} \\
\text { G. Cardano Ars Magna } 1545 \\
\text { V. Barger, et al. PRD } 22 \text { (1980) } 2718 \\
\text { H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) } 273
\end{array}
$$

Then write down eigenvectors (mixing angles)
H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) 273
K. Kimura, A. Takamura, H. Yokomakura hep-ph/0205295

PBD, S. Parke, X. Zhang 1907. 02534

Eigenvalues Analytically: The Exact Solution

Solve the cubic characteristic equation: eigenvalues

$$
\begin{array}{r}
\left(\widehat{m^{2}}{ }_{i}\right)^{3}-A\left(\widehat{m^{2}}{ }_{i}\right)^{2}+B \widehat{m^{2}}{ }_{i}-C=0 \\
A \equiv \sum_{i} \widehat{m^{2}}{ }_{i}=\Delta m_{31}^{2}+\Delta m_{21}^{2}+a \\
B \equiv \sum_{i>j} \widehat{m^{2}}{ }_{i} \widehat{m^{2}}{ }_{j}=\Delta m_{31}^{2} \Delta m_{21}^{2}+a\left(\Delta m_{e e}^{2} c_{13}^{2}+\Delta m_{21}^{2}\right) \\
C \equiv \prod_{i} \widehat{m^{2}}{ }_{i}=a \Delta m_{31}^{2} \Delta m_{21}^{2} c_{13}^{2} c_{12}^{2} \\
\text { G. Cardano Ars Magna } 1545 \\
\text { V. Barger, et al. PRD } 22 \text { (1980) } 2718 \\
\text { H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) } 273
\end{array}
$$

Then write down eigenvectors (mixing angles)
H. Zaglauer, K. Schwarzer Z.Phys. C40 (1988) 273
K. Kimura, A. Takamura, H. Yokomakura hep-ph/0205295

PBD, S. Parke, X. Zhang 1907. 02534
"Unfortunately, the algebra is rather impenetrable."
V. Barger, et al.

Eigenvalues Analytically: The Exact Solution

The cubic solution (in neutrino terms)

$$
\begin{aligned}
\widehat{m^{2}}{ }_{1} & =\frac{A}{3}-\frac{1}{3} \sqrt{A^{2}-3 B} S-\frac{\sqrt{3}}{3} \sqrt{A^{2}-3 B} \sqrt{1-S^{2}} \\
\widehat{m^{2}}{ }_{2} & =\frac{A}{3}-\frac{1}{3} \sqrt{A^{2}-3 B} S+\frac{\sqrt{3}}{3} \sqrt{A^{2}-3 B} \sqrt{1-S^{2}} \\
\widehat{m^{2}}{ }_{3} & =\frac{A}{3}+\frac{2}{3} \sqrt{A^{2}-3 B} S \\
A & =\Delta m_{21}^{2}+\Delta m_{31}^{2}+a \\
B & =\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left[c_{13}^{2} \Delta m_{31}^{2}+\left(c_{12}^{2} c_{13}^{2}+s_{13}^{2}\right) \Delta m_{21}^{2}\right] \\
C & =a \Delta m_{21}^{2} \Delta m_{31}^{2} c_{12}^{2} c_{13}^{2} \\
S & =\cos \left\{\frac{1}{3} \cos ^{-1}\left[\frac{2 A^{3}-9 A B+27 C}{2\left(A^{2}-3 B\right)^{3 / 2}}\right]\right\}
\end{aligned}
$$

Get the eigenvectors

Values and Vectors

Probability amplitude:

$$
\mathcal{A}_{\alpha \beta}=\sum_{i} \widehat{U}_{\alpha i}^{*} e^{-i \widehat{m^{2}} L / 2 E} \widehat{U}_{\beta i}
$$

- Eigenvalues give the frequencies of the oscillations

Where should DUNE be?

- Eigenvectors give the amplitudes of the oscillations

How many events will DUNE see?

Exact Neutrino Oscillations in Matter: Mixing Angles

$$
\begin{aligned}
s_{12}^{2} & =\frac{-\left[\left(\widehat{m^{2}}\right)^{2}-\alpha \widehat{m^{2}}{ }_{2}+\beta\right] \Delta \widehat{m^{2}}{ }_{31}}{\left.\left.\left[\widehat{m}^{2}\right)^{2}-\alpha \widehat{m^{2}}{ }_{1}+\beta\right] \Delta \widehat{m^{2}}{ }_{32}-\left[\widehat{m^{2}}{ }_{2}\right)^{2}-\alpha \widehat{m^{2}}{ }_{2}+\beta\right] \Delta \widehat{m^{2}}{ }_{31}} \\
s_{13}^{2} & =\frac{\left(\widehat{m^{2}}{ }_{3}\right)^{2}-\alpha \widehat{m^{2}}{ }_{3}+\beta}{\Delta \widehat{m}^{2}{ }_{31} \Delta \widehat{m}^{2}{ }_{32}} \\
s_{23}^{2} & =\frac{s_{23}^{2} E^{2}+c_{23}^{2} F^{2}+2 c_{23} s_{23} c_{\delta} E F}{E^{2}+F^{2}} \\
e^{-i \widehat{\delta}} & =\frac{c_{23} s_{23}\left(e^{-i \delta} E^{2}-e^{i \delta} F^{2}\right)+\left(c_{23}^{2}-s_{23}^{2}\right) E F}{\sqrt{\left(s_{23}^{2} E^{2}+c_{23}^{2} F^{2}+2 E F c_{23} s_{23} c_{\delta}\right)\left(c_{23}^{2} E^{2}+s_{23}^{2} F^{2}-2 E F c_{23} s_{23} c_{\delta}\right)}} \\
\alpha & =c_{13}^{2} \Delta m_{31}^{2}+\left(c_{12}^{2} c_{13}^{2}+s_{13}^{2}\right) \Delta m_{21}^{2}, \beta=c_{12}^{2} c_{13}^{2} \Delta m_{21}^{2} \Delta m_{31}^{2} \\
E & =c_{13} s_{13}\left[\left(\widehat{m}_{3}-\Delta m_{21}^{2}\right) \Delta m_{31}^{2}-s_{12}^{2}\left(\widehat{m^{2}}{ }_{3}-\Delta m_{31}^{2}\right) \Delta m_{21}^{2}\right] \\
F & =c_{12} s_{12} c_{13}\left(\widehat{m}_{3}-\Delta m_{31}^{2}\right) \Delta m_{21}^{2}
\end{aligned}
$$

New Physics

DUNE and T2HK will unprecedented capabilities to test the three-neutrino oscillation picture

Extend DMP to new physics progress report:
\square Sterile
S. Parke, X. Zhang 1905.01356
\square NSI
S. Agarwalla, et al. 2103.13431
\square Neutrino decay
\square Decoherence
\square...
Given Rosetta, extensions should be considerably simpler

References

SK hep-ex/9807003
M. Gonzalez-Garcia, et al. hep-ph/0009350
 M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064
SK hep-ex/0604011
T. Schwetz, M. Tortola, J. Valle 0808. 2016
M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106. 2822
D. Forero, M. Tortola, J. Valle 1205.4018
D. Forero, M. Tortola, J. Valle 1405.7540
P. de Salas, et al. 1708.01186

CP violation in matter

The CPV Term in Matter

The amount of CPV is

$$
P_{\alpha \beta}-\bar{P}_{\alpha \beta}= \pm 16 J \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32} \quad \alpha \neq \beta
$$

where the Jarlskog is

$$
\begin{aligned}
& J \equiv \Im\left[U_{\alpha i} U_{\beta j} U_{\alpha j}^{*} U_{\beta i}^{*}\right] \quad \alpha \neq \beta, i \neq j \\
& J=c_{12} s_{12} c_{13}^{2} s_{13} c_{23} s_{23} \sin \delta
\end{aligned}
$$

C. Jarlskog PRL 55 (1985)

The exact term in matter is known to be

$$
\frac{\widehat{J}}{J}=\frac{\Delta m_{21}^{2} \Delta m_{31}^{2} \Delta m_{32}^{2}}{\Delta \widehat{m^{2}}{ }_{21} \Delta \widehat{m}_{31}^{2} \Delta \widehat{m^{2}}{ }_{32}}
$$

V. Naumov IJMP 1992
P. Harrison, W. Scott hep-ph/9912435

CPV Tension at T2K

$$
J=c_{12} s_{12} c_{13}^{2} s_{13} c_{23} s_{23} \sin \delta
$$

CPV in Matter

CPV in matter can be written sans $\cos \left(\frac{1}{3} \cos ^{-1}(\cdots)\right)$ term.

$$
\begin{gathered}
\frac{\widehat{J}}{J}=\frac{\Delta m_{21}^{2} \Delta m_{31}^{2} \Delta m_{32}^{2}}{\Delta \widehat{m}^{2}} \widehat{m b}^{2}{ }_{31} \Delta \widehat{m^{2}}{ }_{32} \\
\left(\Delta \widehat{m^{2}}{ }_{21} \Delta \widehat{m^{2}}{ }_{31} \Delta \widehat{m^{2}}{ }_{32}\right)^{2}=\left(A^{2}-4 B\right)\left(B^{2}-4 A C\right)+(2 A B-27 C) C \\
A \equiv \sum_{j} \widehat{m^{2}}{ }_{j}=\Delta m_{31}^{2}+\Delta m_{21}^{2}+a \\
B \equiv \sum_{j>k} \widehat{m^{2}}{ }_{j} \widehat{m^{2}}{ }_{k}=\Delta m_{31}^{2} \Delta m_{21}^{2}+a\left(\Delta m_{e e}^{2} c_{13}^{2}+\Delta m_{21}^{2}\right) \\
C \equiv \prod_{i} \widehat{m^{2}}{ }_{j}=a \Delta m_{31}^{2} \Delta m_{21}^{2} c_{13}^{2} c_{12}^{2}
\end{gathered}
$$

This is the only oscillation quantity in matter that can be written exactly without $\cos \left(\frac{1}{3} \cos ^{-1}(\cdots)\right)$!
H. Yokomakura, K. Kimura, A. Takamura hep-ph/0009141

CPV Factorizes

Thus \widehat{J}^{-2} is fourth order in matter potential: only two matter corrections are needed.

$$
\frac{\widehat{J}}{J}=\frac{1}{\left|1-\left(a / \alpha_{1}\right) e^{i 2 \theta_{1}}\right| \mid 1-\left(a / \alpha_{2}\right) e^{i 2 \theta_{2} \mid}}
$$

CPV Factorizes

Thus \widehat{J}^{-2} is fourth order in matter potential: only two matter corrections are needed.

$$
\frac{\widehat{J}}{J}=\frac{1}{\left|1-\left(a / \alpha_{1}\right) e^{i 2 \theta_{1}}\right| \mid 1-\left(a / \alpha_{2}\right) e^{i 2 \theta_{2} \mid}}
$$

CPV in matter can be well approximated:

$$
\frac{\widehat{J}}{J} \approx \frac{1}{\mid 1-\left(a / \Delta m_{e e}^{2}\right) e^{i 2 \theta_{13}| | 1-\left(c_{13}^{2} a / \Delta m_{21}^{2}\right) e^{i 2 \theta_{12}} \mid}}
$$

PBD, Parke 1902. 07185
See also X. Wang, S. Zhou 1901.10882
Precise at the $<0.04 \%$ level!

CPV Factorizes

Thus \widehat{J}^{-2} is fourth order in matter potential: only two matter corrections are needed.

$$
\frac{\widehat{J}}{J}=\frac{1}{\left|1-\left(a / \alpha_{1}\right) e^{i 2 \theta_{1}}\right| \mid 1-\left(a / \alpha_{2}\right) e^{i 2 \theta_{2} \mid}}
$$

CPV in matter can be well approximated:

$$
\frac{\widehat{J}}{J} \approx \frac{1}{\mid 1-\left(a / \Delta m_{e e}^{2}\right) e^{i 2 \theta_{13}| | 1-\left(c_{13}^{2} a / \Delta m_{21}^{2}\right) e^{i 2 \theta_{12} \mid}}}
$$

PBD, Parke 1902.07185
See also X. Wang, S. Zhou 1901. 10882
Precise at the $<0.04 \%$ level!

One caveat in support of δ

If the goal is CP violation the Jarlskog should be used

however

If the goal is measuring the parameters one must use δ

Given $\theta_{12}, \theta_{13}, \theta_{23}$, and J, I can't determine the sign of $\cos \delta$ which is physical

$$
\text { e.g. } P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \text { depends on } \cos \delta \text { a tiny bit }
$$

- As T2(H)K has almost no $\cos \delta$ sensitivity, they should focus on J
- NOvA/DUNE has some $\cos \delta$ sensitivity, so both J and δ should be reported

[^0]: BNL Summer Student Lecture: June 22, 2023 13/29

