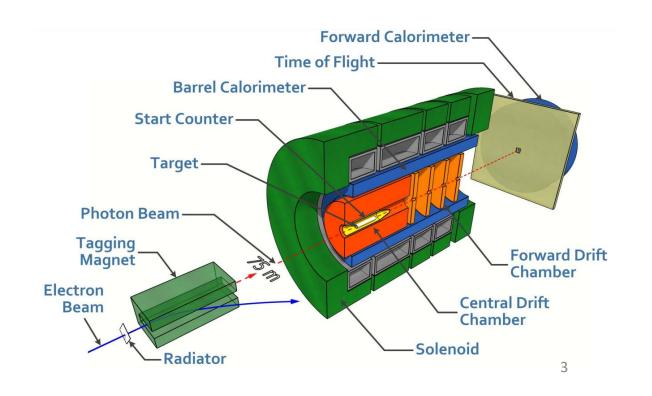


GlueX Barrel ECal Simulations

Jon Zarling

5/15/2023

Discussion of BCAL Simulations @ GlueX


- I'll try to summarize GlueX work, mostly from NIM papers, some internal documentation
- Much of this work from late 2000s early 2010s
 - Summarizing work by Zisis, George Lolos, and students
- Might not hit all points in detail, but hopefully we can determine what to focus and prioritize

GlueX Geometry & Kinematics

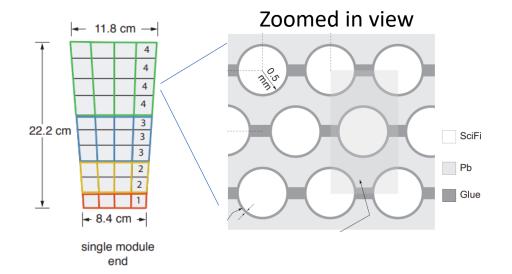
- Start time: known precisely, independent of BCAL
- Photons up to ~ 2.5 GeV
- ~ 15 radiation lengths at 90°
- SiPMs determine shower E, ϕ
 - fADC readout
- TDCs aid in determining z
 - Primary vertex: from tracking

References

Much of this talk documented in NIM papers on GlueX BCAL

• GlueX NIM, all subsystems (2021): https://arxiv.org/abs/2005.14272

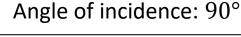
More details:

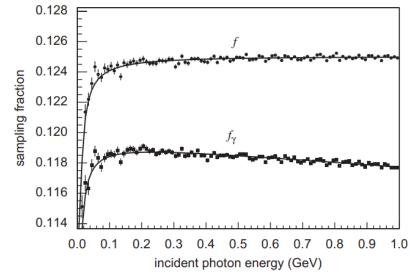

- Post-construction BCAL NIM (2018): https://arxiv.org/pdf/1801.03088.pdf
- Beam test NIM (2008): https://doi.org/10.1016/j.nima.2008.08.137

(Nonstandard) Simulations for GlueX BCAL

- Used for special studies, not for physics analyses
- GEANT: simulate only one module (right)
 - Longitudinal shower distribution
 - Sampling fraction
 - Energy leakage
 - Determine expected resolution
 - GEANT 3.21...
- FLUKA: 5 modules
 - Deemed more accurate at lower energies
 - Study readout segmentation, low E response
 - Cross check to GEANT

Sampling Fraction From Simulation

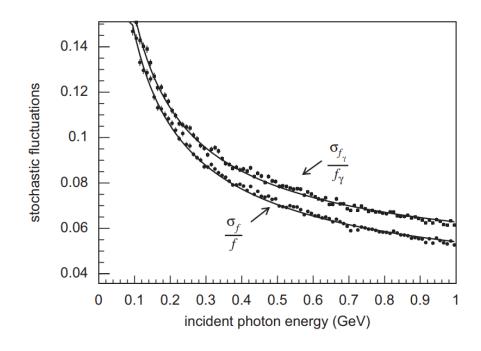

• Fraction of energy deposited in SciFi / total module:

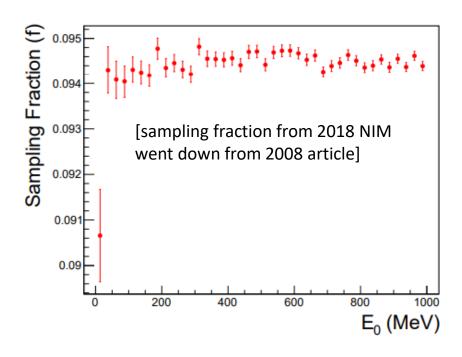

$$f = \frac{E_{SciFi}}{E_{mod}}$$

Or fraction of energy deposited / photon E

$$f_{\gamma} = \frac{E_{SciFi}}{E_{\gamma}}$$

(f and f_{γ} differ in terms of whether leakage included in denominator)





Sampling Fraction and Resolution

- Stochastic variation in sampling fraction main driver of resolution
- Care in fiber description: only core considered sensitive for f (not two layers of cladding outside core, which are also in geometry)

Standard GlueX Simulations (reference)

Main BCAL simulation code on GitHub (class GlueXSensitiveDetectorBCAL)

- Homogeneous mix of Pb + SciFi + glue
 - XML geometry on GitHub
 - XML Pb+SciFi material on GitHub

• GlueX Geant4 Guru: Richard Jones (richard.t.jones@uconn.edu)

Table 1: Summary of BCAL properties.

Table 1: Summary of BCAL properties.	
Property	Value
Number of modules	48
Module length	$390 \mathrm{\ cm}$
Module inner/outer widths	84.0 mm/118.3 mm
Lead-scintillator matrix thickness	221.9 mm
Inner/outer Al plates thickness	8 mm/31.75 mm
Module azimuthal bite	7.5°
Total number of fibers	685000
Lead sheet thickness	$0.5 \mathrm{\ mm}$
Kuraray SCSF-78MJ multi-clad fiber	1.0 mm
Fiber pitch radial/lateral	1.22 mm/1.35 mm
Weight fractions (% Pb:SF:Glue)	86.1: 10.5: 3.4
Effective density	4.88 g/cm^3
Effective Radiation Length	$1.45~\mathrm{cm}$
Effective Molière radius	$3.63~\mathrm{cm}$
Effective Atomic Weight	71.4
Effective Atomic Number	179.9
Sampling fraction	0.095
Total weight	28 t

GlueX Simulation Parameters (another reference)

Parameters read from calibrations database for BCAL:

- Minimum energy for cell hit (1 MeV)
- Minimum time between hits (merge hits in cell if < 50 ns)
- Max hits allowed per cell (100)
- Attenuation length of SciFi
- c_{eff} for SciFi

Shower Progression in GlueX MC

As shower progresses through sensitive material

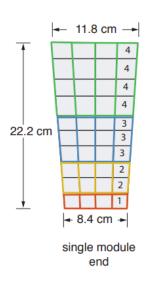
- 1. Collect hits in cell above min 1 MeV
- 2. Calculate hit time and attenuated energy at end of fiber
- 3. Merge hits if closer than 50 ns from arrival at BCAL end
- 4. Calculate upstream and downstream ends separately

Simplifications (by my potentially flawed reading)

- After hit(s) in cell collected, nothing explicitly modeled by geant(?)
- Energy attenuated (no stochasticity)
- Hits merged by simple energy weight E_i/E_{tot}

Shower Progression, cont.

- Attenuation:
 - Assume single exponential, no stochasticity
 - Double exponential found to describe SciFi better, but not used
- Timing:
 - No explicity modeling of light guide, SiPM, preamp, etc. ?


Energy and time are smeared empirically after geant4 simulation

Cluster Reconstruction: Short Sketch

- Start with highest energy cell as "seed"
 - Add additional cells based on proximity, energy until possibilities exhausted
 - This forms a "cluster", repeat until no more "seed" cells
- Double check if cell fits another cluster better
- Merge clusters, if close enough together
- No attempts at splitting (no mention in documentation, at least)

Shower Reconstruction (reference)

- Clusters can be reconstructed independent of other subsystems
- Going from cluster ⇒ neutral shower object:
 - Get initial vertex in target determined from tracking
 - Veto likely hadronic showers via track projections to BCAL, timing
 - Apply nonlinear corrections
- Shower position:
 - Determined by energy square weighted average
 - To do: dig into shower-level correction factors, if any