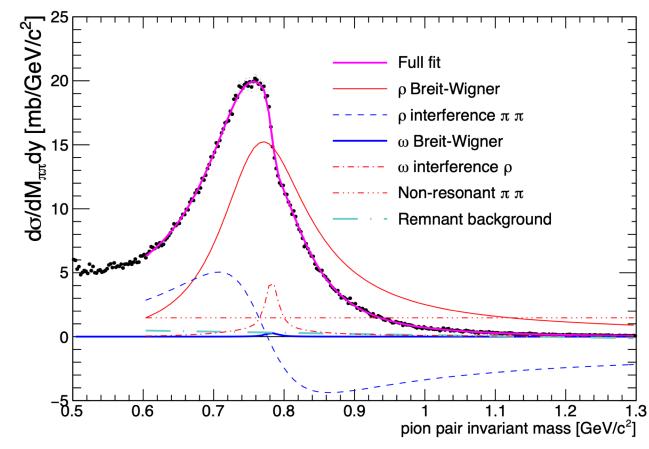

Beyond the phi: the direct K⁺K⁻ contribution

Spencer R. Klein, LBNL

Presented at the ePIC Exclusive, Diffractive and Tagging Meeting


June 5, 2023

- Review: the ρ
- - ◆ ALICE Status
- ePIC implications

ρ^0 + direct $\pi\pi$ data

- Highest statistics modern measurement by STAR, with UPCs
 - ◆ 294,000 pairs
- Fit to ρ^0 + direct $\pi\pi + \omega$ + interference between them
 - \star $\chi^2/DOF \sim 1$

STAR: Phys. Rev. C96, 054904 (2017)

Equations

 $d\sigma/dM_{\pi\pi}$ given by a relativistic Breit-Wigner equation:

$$\left|rac{d\sigma}{dM_{\pi^+\pi^-}} \propto \left|A_
ho rac{\sqrt{M_{\pi\pi}M_
ho\Gamma_
ho}}{M_{\pi\pi}^2 - M_
ho^2 + iM_
ho\Gamma_
ho} + B_{\pi\pi} + C_\omega e^{i\phi_\omega} rac{\sqrt{M_{\pi\pi}M_\omega\Gamma_{\omega o\pi\pi}}}{M_{\pi\pi}^2 - M_\omega^2 + iM_\omega\Gamma_\omega}
ight|^2 + f_p$$

- \blacksquare A_{ρ} , $B_{\pi\pi}$ and C_{ω} are the amplitudes for the three components
 - ◆ All can be complex (C_∞ has its separate phase shown explicitly)
 - Relative phases matter
 - ρ :direct $\pi\pi$ quantified by $|B_{\pi\pi}/A_{\rho}|$, with units GeV-1/2
- f_p is for background (e. g. $\gamma\gamma$ ->ee)
- Widths depend on $M_{\pi\pi}$ (phase space)

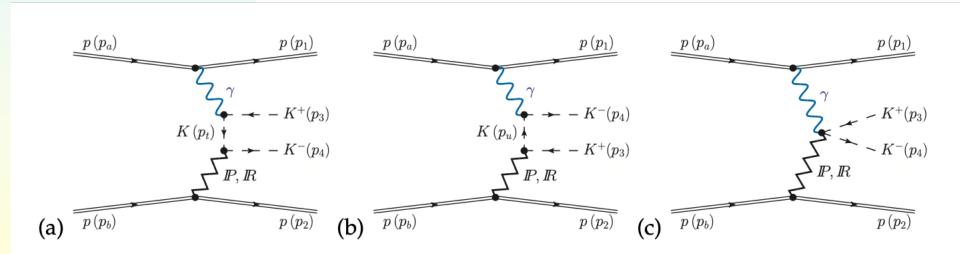
$$\Gamma_{\rho} = \Gamma_0 \frac{M_{\rho}}{M_{\pi\pi}} \left(\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right)^{3/2}$$

$$\Gamma_{\omega} = \Gamma_0 \frac{M_{\omega}}{M_{\pi\pi}} \left(\frac{M_{\pi\pi}^2 - 9m_{\pi}^2}{M_{\omega}^2 - 9m_{\pi}^2} \right)^n,$$

The ϕ

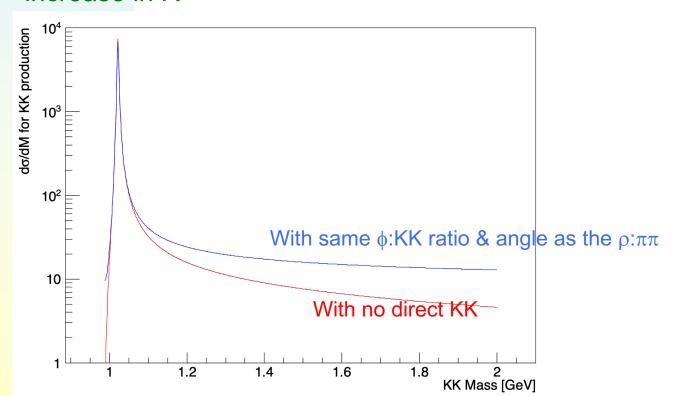
- \mathbf{M}_{ϕ} =1019 MeV, Γ_{ϕ} = 4.4 MeV
 - ◆ Narrow
- M_{\phi} 2M_{K±} + 31 MeV
- Alternative: Look at high-mass φ's

$$\frac{d\sigma}{dM_{KK}} = \left| A_{\phi} \frac{\sqrt{M_{KK} M_{\phi} \Gamma_{\phi}}}{M_{KK}^2 - M_{\phi}^2 + i M_{\phi} \Gamma_{\phi}} + B_{KK} \right|^2 \tag{1}$$

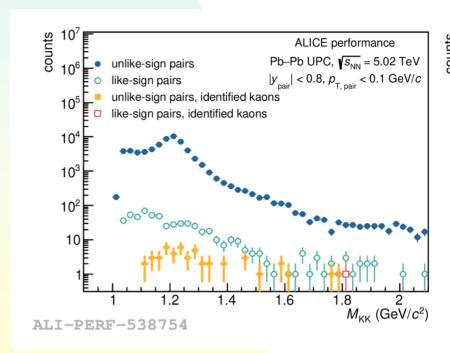

- where $M_{\phi} = 1019.416 \pm 0.016 \text{MeV}$ [10] and Γ_{ϕ} are the ϕ mass and mass-dependent width, respectively,
- 4 with

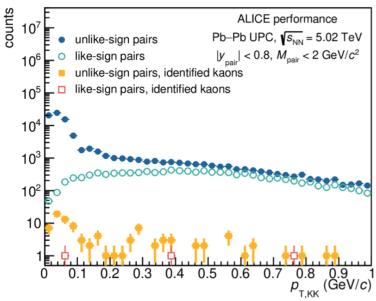
$$\Gamma_{\phi} = \Gamma_0 \frac{M_K}{M_{KK}} \left(\frac{M_{KK}^2 - 4M_K^2}{M_{\phi}^2 - 4M_K^2} \right)^{3/2}.$$
 (2)

 Because of the mass-dependent width, drop-off is slower than it might be, even with B_{KK}=0

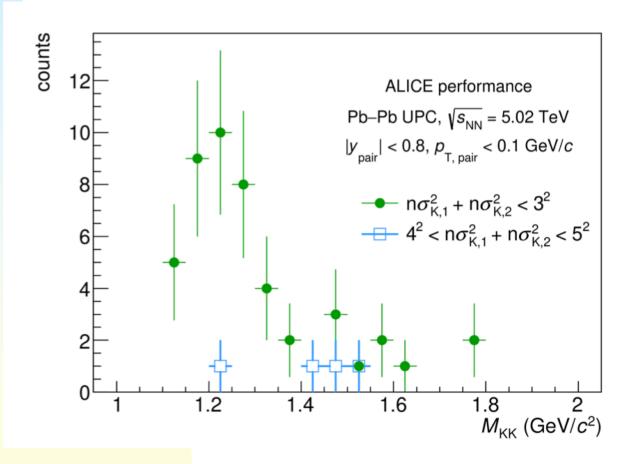

Direct KK

- Not yet seen
- We expect direct KK production along with the φ, with the same mechanism - just like the ρ + direct ππ
- Roughly similar relative amplitudes and relative phase (?)
 - ◆ Constructive interference(?)
- Higher masses than the φ, so easier to see


Mass spectrum


- **KK** mass spectrum, assuming the same ϕ :KK ratio as ρ : $\pi\pi$
 - Somewhat counterintuitive behavior:
 - Far above M_φ, for very small R= |B_{KK}/A_φ|, destructive interference means σ drops as R rises from 0
 - Different phase angle -> possibly different behavior
 - As R rises further, direct KK dominates, and σ rises with a further increase in R

ALICE studies


- Parallels UPC ρ +direct $\pi\pi$ photoproduction analysis, but with tight PID cuts to select a clean KK sample (above the ϕ)
 - $N(KK) \sim 1/1000 N(\pi\pi)$
- 1.1 GeV < M_{KK} < 1.4 GeV</p>
 - Sweet spot with OK acceptance and good PID $\pi\pi$ rejection

ALICE mass spectrum

Clean sample in chosen mass range

Some implications for ePIC (in lieu of conclusions)

- With high enough rates (which ePIC has), we can use high mass KK pairs as a proxy for the \(\phi \)
- For measurements at $M_{KK} > 1.1$ GeV, the amplitude ratio $|B_{KK}/A_{\phi}|$ and its phase angle are correlateted. If $|B_{KK}/A_{\phi}|$ is large, then it will increase σ , but a smaller R may decrease σ through destructive interference with the ϕ .
 - - ◆ ePIC can do this at higher Q², and then assume that the phase angle does not change much as Q² decreases.
 - Theoretical justification is needed.
- The φ is narrow, so any measurement will include a significant direct KK component. This will complicate any attempt to measure the φ cross-section by itself.
- Direct KK have a different wave function from the φ, so will complicate efforts to interpret φ data in terms of dipole-model parton densities.