

Kapton Flex Hybrid R&D Update

Mathieu Benoit, Oskar Hartbrich (ORNL)

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Barrel TOF Flex PCB

- Connect 64 ASICs (+X) along stave to RDO at end of stave
 - Low voltage, bias (HV), ground
 - Differential e-links, **clocks**, slowcontrol/I²C?
 - Individual ASIC output data rate is only ~Mbit/s (based on Tonko's initial estimates)
- Low mass: 1% X/X₀ total barrel material budget
- Needs to fit barrel TOF geometry
 - ~1.2m length
- Kapton flex PCB:
 - Custom geometry "sandwich" of thin kapton and conductor layers
 - Used in other tracking detectors already

PID-TOF 3M-50M 240-500 6Gb/sec 12 EICROC / AC-LGAD Channel / Fiber counts de Considering pitches of: .5mm x 1cm, .5mm x .3cm	
---	--

Budget Request

Inst.	Personnel		Budget (k\$)
	Readout and Timing Distribution R&D		
BNL	Electrical Engineer		38
BNL	Staff Scientist	$2 \mathrm{x} 0.2 \mathrm{FTE}$	0 (in-kind)
BNL	Xilinx Dev. Kit		4
BNL	Timing Chips + Boards		15
BNL	Travel Support		5
	Barrel Service Hybrid R&D		
ORNL	Electrical Engineer		32
ORNL	Staff Scientist	$0.1 \; \mathrm{FTE}$	0 (in-kind)
ORNL	Materials and Supplies		8
ORNL	Xilinx Dev. Kit		4
	Endcap Service Hybrid R&D		
Rice	Electrical Engineer	$0.15 \mathrm{FTE}$	18
Rice	Faculty	$0.1 \; \mathrm{FTE}$	0 (in-kind)
Total			116

Table 22: Budget request for the TOF system readout electronics R&D in FY23. All entries in thousands of dollars.

Test Structure and Measurements

- Design test prototype: As long as possible
 - Differential link loops at various lengths, geometries (?)
 - LV/HV conductors
- RF testing:
 - Confirm simulations: bandwidths, insertion losses, crosstalk
 - Test link speed/BER with FPGA/established line driver, edge jitter
 - Eventually integration into timing distribution test bench at ORNL
- DC testing:
 - Acceptable voltages, currents, resistances
- Mechanical:
 - Thermal cycling
 - Handling, bending, folding

Simulation and Design

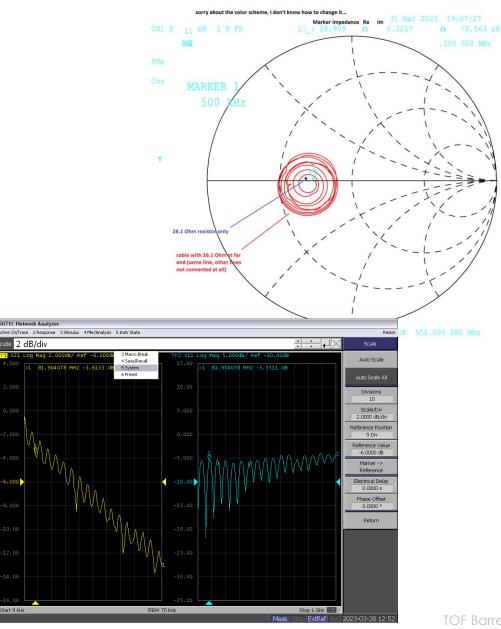
• LV/HV

- Required material budget for current requirements
- How much DC-DC converters for given ASIC?
- Serial powering?
- Design requirements for HV conductors
- Differential links:
 - Insertion losses, analog bandwidth for different lengths
 - Crosstalk on clock line(s)!
 - Ultimately informs output drive strength
- Common flex foil, or separate for LV/HV/RF?
- Supported by ORNL electrical engineering

Technological Survey

- Kapton-Cu flex foils are available from various vendors
 - Cheap (~\$100/3pcs), quick (3-4 weeks)
 - Can produce many prototypes for a more experimental approach
- Low mass Kapton-Al is more specialized and expensive
 Not worth it for prototypes at this point
- Max size: 1m?
 - Depends on vendor, but can fit very long traces on moderately sized foils in any case...

The "Experimentalist Approach"

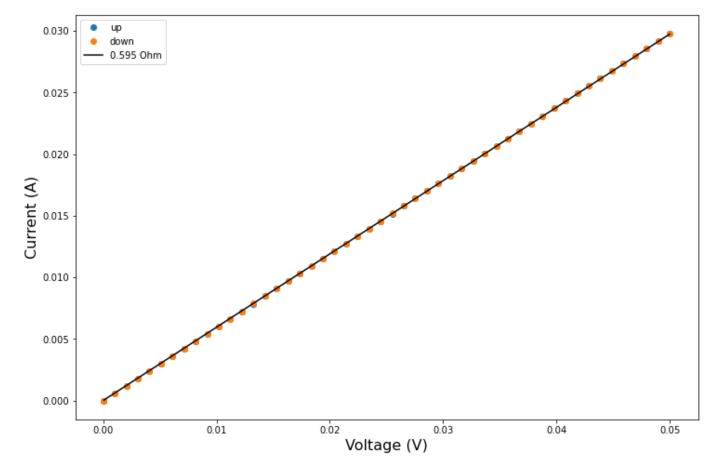

- Still identifying the right ORNL engineering resources...
- Producing cheap Cu-flex prototypes instead
 - 2x 1.5m differential pairs on 40cm flex
- Using DPTS (ITS3 test structure) CML driver as test bench driver
 - 65nm CMOS line driver
- First attempt does not yield useful data on the scope
 - Not sure if due to transmission line or connectors

Vector Network Analyzer Measurements

- Measurements by G. Visser (Indiana) and ORNL
- Our first attempt at transmission line is not 500hm...
 - "Easy" fix for next attempt...

2 dB/div

Available Equipment


- 4ch Vector Network Analyzer available
 - Insertion loss
 - Inter-line crosstalk
 - Need proper 50R transmission line to make sense of measurements
- Time domain reflectometer still looking
 - Characterize impedance mismatches along length of transmission line

DC Resistance Measurements

- 0.5950hm along strip
 - 1.49 m length, 1mm pitch, 35um thickness
 - 2.35E-8 Ohm*m (c.f. 1.8E-8 Ohm*m for Cu)
- Inter-strip resistance
 - Could not get reliable measurement so far (capacitive effects dominate)
 - Tested up to 500V without notable leakage

Summary/Timeline

- We have first Cu-flex foils on hand
- Will ramp up engineering support very soon
 - Simulations, design, expertise...
- Continue prototype evaluations in our lab
 Using DPTS CML driver as reference
- Plan to produce several more Cu-flex prototypes
 - Fix line geometry to be closer to 500hm
 - Shorter trace lengths: 40cm, 80cm, 120cm
- Al-flex as final prototype product for current funding period